
Computer Graphics (CS 543)
Lecture 10b: Soft Shadows (Maps and

Volumes), Normal and Bump Mapping

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Shadow Buffer Theory

 Observation: Along each path from light
 Only closest object is lit

 Other objects on that path in shadow

 Shadow Buffer Method
 Position a camera at light source.

 uses second depth buffer called the shadow map

 Shadow buffer stores closest object on each path

Lit

In shadow

(Stores

point B)

Put camera

here

Shadow Map Illustrated
 Point va stored in element a of shadow map: lit!

 Point vb NOT in element b of shadow map: In shadow

Not limited to planes

Shadow Map: Depth Comparison

Recall: OpenGL Depth Buffer (Z Buffer)

 Depth: While drawing objects, depth buffer stores distance of
each polygon from viewer

 Why? If multiple polygons overlap a pixel, only closest one
polygon is drawn

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

1.0 1.0 1.0 1.0

Depth

Shadow Map Approach

 Rendering in two stages:

 Generate/load shadow Map

 Render the scene

Loading Shadow Map

 Initialize each element to 1.0

 Position a camera at light source

 Rasterize each face in scene updating closest object

 Shadow map (buffer) tracks smallest depth on each
path

Put camera

here

Shadow Map (Rendering Scene)

 Render scene using camera as usual

 While rendering a pixel find:

 pseudo-depth D from light source to P

 Index location [i][j] in shadow buffer, to be tested

 Value d[i][j] stored in shadow buffer

 If d[i][j] < D (other object on this path closer to light)

 point P is in shadow

 lighting = ambient

 Otherwise, not in shadow

 Lighting = amb + diffuse + specular D[i][j]
D

In shadow

Loading Shadow Map

 Shadow map calculation is independent of eye
position

 In animations, shadow map loaded once

 If eye moves, no need for recalculation

 If objects move, recalculation required

Example: Hard vs Soft Shadows

Hard Shadow Soft Shadow

Definitions

 Point light: create hard shadows (unrealistic)

 Area light: create soft shadows (more realistic)

point source

umbra

area source

Umbra

(no light)

Penumbra

(some light)

Shadow Map Problems

 Low shadow map resolution results in jagged shadows

Percentage Closer Filtering
 Instead of retrieving just 1 value from shadow map, retrieve

neighboring shadow map values as well

 Blend multiple shadow map samples to reduce jaggies

Shadow Map Result

Shadow volumes

 Most popular method for real time

 Shadow volume concept

Shadow volumes
 Create volumes of space in shadow from each

polygon in light

 Each triangle creates 3 projecting quads

Using Shadow Volume

 To test a point, count number of polygon intersections
between the point and the eye.

 If we look through more frontfacing than backfacing
polygons, then in shadow.

frontfacing

backfacing

1 frontfacing

1 backfacing

= Not in shadow

1 frontfacing

0 backfacing

= In shadow

0 frontfacing

0 backfacing

= Not in shadow

Shadow Volume Example

Image courtesy of NVIDIA Inc.

Arbitrary geometry

 Shadow mapping and shadow volumes can render shadows
onto arbitrary geometry

 Recent focus on shadow volumes, because currently
most popular, and works on most hardware

 Works in real time…

 Shadow mapping is used

in Pixar’s rendering software

Normal Mapping

Normal Mapping
 Store normals in texture

 Normals <x,y,z> stored in <r,g,b> values in texture

 Idea: Use low resolution mesh + high resolution normal map

 Normal map may change a lot, simulate fine details

 Low rendering complexity method for making low-resolution
geometry look like it’s much more detailed

Normal Mapping Example: Ogre
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 157)

Base color texture
(used this in place of
diffuse component)

Normal texture map

Texture mapped
Ogre (Uses mesh
normals)

Texture and normal
mapped Ogre (Uses
normal map to
modify mesh
normals)

Creating Normal Maps

 Many tools for creating normal map

 E.g. Nvidia texture tools for Adobe photoshop
 https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

Tangent Space Vectors

 Normals in normal map stored in object local coord. frame (or
tangent space)

 Object Local coordinate space? Axis positioned on surface of
object (NOT global x,y,z)

 Need Tangent, normal and bi-tangent vectors at each vertex
 z axis aligned with mesh normal at that point

 x, y axes at a tangent (and bi-tangent) to the surface

Tangent Space Vectors

 Normals stored in texture includes mesh transformation + local
deviation (e.g. bump)

 Reflection model must be evaluated in object’s local coordinate
(n, t, b)

 Need to transform view, light and normal vectors into object’s
local coordinate space

v

l

Need to transform

l, v and n into object

local coord.

Transforming V,L and N into Object’s Local
Coordinate Frame

 To transform a point P in the eye coordinate frame into a
corresponding point S in object’s local coordinate frame:

Point P in eye
coordinate frame

Point S in object’s local
coordinate frame

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal

Vertex 1 Attributes

layout (location) = 0

layout (location) = 1

VertexTangent

z

OpenGL Program

Vertex Shader

VertexPosition

VertexTexCoord

VertexNormal

VertexTangent

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

Vertex Shader

Transform normal and

tangent to eye space

….

Compute bi-normal vector

Form matrix to convert from

eye to local object coordinates

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

Vertex Shader

Get position in eye coordinates

….

Transform light and view

directions to tangent space

Fragment Shader

Receive Light, View directions

and TexCoord set in vertex shader

……

Declare Normal and Color maps

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Function to compute

Phong’s lighting model

Look up normal from

normal map

Rescale from [0,1] to

[-1,1] range

Look up diffuse coeff.

from color texture

Bump Mapping

Bump mapping

 by Blinn in 1978

 Inexpensive way of simulating wrinkles and bumps
on geometry

 Too expensive to model these geometrically

 Instead let a texture modify the normal at each pixel,
and then use this normal to compute lighting

geometry
Bump map

Stores heights: can derive normals

+ Bump mapped geometry
=

Bump mapping: Blinn’s method

 Idea: Distort the surface normal at point to be rendered

 Option a (left): Modify normal n along u, v axes to give n’
 In texture map, store how much to perturb n (bu and bv)

 Using bumpmap
 Look up bu and bv

 n’ = n + buT + bvB

(T and B are tangent and bi-tangent vectors)

 Note: N’ is not normalized

 Bump map code similar to normal map code.

 Just compute, use n’ instead of n

Bump mapping: Blinn’s method

 Option b (right): Store values of u, v as a heightfield
 Slope of consecutive columns determines how much n along u

 Slope of consecutive rows determines how much n along v

 Option c (Angel textbook): Encode using differential equations

Bump mapping: examples

Bump Mapping Vs Normal Mapping
 Bump mapping

 (Normals n=(nx , ny , nz) stored as
local distortion of face orientation.
Same bump map can be
tiled/repeated and reused for
many faces)

 Normal mapping

 Coordinates of normal (relative to
tangent space) are encoded in
color channels

 Normals stored combines

face orientation + plus distortion.
)

Displacement Mapping

 Uses a map to displace
the surface at each
position

 Offsets the position per
pixel or per vertex

 Offsetting per vertex is
easy in vertex shader

 Offsetting per pixel is
architecturally hard

Parallax Mapping
 Bump and normal maps increase surface detail, but do not

simulate:
 Parallax effects: Slanting of texture with view angle

 Blockage of one part of surface by another part

 Parallax mapping
 simulates parallax effects

 Looks up a texture location offset depending on view angle

 Different texture returned after offset

Normal map

Looks up here

Parallax map

Looks up here

Relief (or Parallax Occlusion) Mapping

 Parallax mapping approximates parallax

 Sometimes doesn’t work well for occlusion effects

 Implement a heightfield raytracer in a shader, detect blockage

 Pretty expensive, but looks amazing

Relief Mapping Example

Cool YouTube Video: https://youtu.be/EkLKhsRzE-g

https://youtu.be/EkLKhsRzE-g

Light Mapping

Light Maps

 Good shadows are complicated and expensive

 If light and object positions do not change, shadows do not
change

 Can “bake” the shadows into a texture map as a preprocess step

 During lighting, lightmap values are multiplied into resulting pixel

Apply this in

fragment shader

Specular Mapping

 Store specular in a map

 Use greyscale texture as a multiplier for specular component

Alpha Mapping

 Represent the alpha channel with a texture

 Can give complex outlines, used for plants

Render Bush

on 1 polygon

Render Bush

on polygon rotated

90 degrees

Alpha Mapping

 Rotation trick works at eye level (left image)

 Breaks down from above (right image)

Mesh Parametrization

Mesh Parametrization

Parametrization in Practice

 Texture creation and parametrization is an art form

 Option: Unfold the surface

Parametrization in Practice

 Option: Create a Texture Atlas

 Break large mesh into smaller pieces

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

 Real Time Rendering by Akenine-Moller, Haines and Hoffman

