
Computer Graphics (CS 543)
Lecture 10b: Soft Shadows (Maps and

Volumes), Normal and Bump Mapping

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Shadow Buffer Theory

 Observation: Along each path from light
 Only closest object is lit

 Other objects on that path in shadow

 Shadow Buffer Method
 Position a camera at light source.

 uses second depth buffer called the shadow map

 Shadow buffer stores closest object on each path

Lit

In shadow

(Stores

point B)

Put camera

here

Shadow Map Illustrated
 Point va stored in element a of shadow map: lit!

 Point vb NOT in element b of shadow map: In shadow

Not limited to planes

Shadow Map: Depth Comparison

Recall: OpenGL Depth Buffer (Z Buffer)

 Depth: While drawing objects, depth buffer stores distance of
each polygon from viewer

 Why? If multiple polygons overlap a pixel, only closest one
polygon is drawn

eye

Z = 0.3

Z = 0.5

1.0 0.3 0.3 1.0

0.5 0.3 0.3 1.0

0.5 0.5 1.0 1.0

1.0 1.0 1.0 1.0

Depth

Shadow Map Approach

 Rendering in two stages:

 Generate/load shadow Map

 Render the scene

Loading Shadow Map

 Initialize each element to 1.0

 Position a camera at light source

 Rasterize each face in scene updating closest object

 Shadow map (buffer) tracks smallest depth on each
path

Put camera

here

Shadow Map (Rendering Scene)

 Render scene using camera as usual

 While rendering a pixel find:

 pseudo-depth D from light source to P

 Index location [i][j] in shadow buffer, to be tested

 Value d[i][j] stored in shadow buffer

 If d[i][j] < D (other object on this path closer to light)

 point P is in shadow

 lighting = ambient

 Otherwise, not in shadow

 Lighting = amb + diffuse + specular D[i][j]
D

In shadow

Loading Shadow Map

 Shadow map calculation is independent of eye
position

 In animations, shadow map loaded once

 If eye moves, no need for recalculation

 If objects move, recalculation required

Example: Hard vs Soft Shadows

Hard Shadow Soft Shadow

Definitions

 Point light: create hard shadows (unrealistic)

 Area light: create soft shadows (more realistic)

point source

umbra

area source

Umbra

(no light)

Penumbra

(some light)

Shadow Map Problems

 Low shadow map resolution results in jagged shadows

Percentage Closer Filtering
 Instead of retrieving just 1 value from shadow map, retrieve

neighboring shadow map values as well

 Blend multiple shadow map samples to reduce jaggies

Shadow Map Result

Shadow volumes

 Most popular method for real time

 Shadow volume concept

Shadow volumes
 Create volumes of space in shadow from each

polygon in light

 Each triangle creates 3 projecting quads

Using Shadow Volume

 To test a point, count number of polygon intersections
between the point and the eye.

 If we look through more frontfacing than backfacing
polygons, then in shadow.

frontfacing

backfacing

1 frontfacing

1 backfacing

= Not in shadow

1 frontfacing

0 backfacing

= In shadow

0 frontfacing

0 backfacing

= Not in shadow

Shadow Volume Example

Image courtesy of NVIDIA Inc.

Arbitrary geometry

 Shadow mapping and shadow volumes can render shadows
onto arbitrary geometry

 Recent focus on shadow volumes, because currently
most popular, and works on most hardware

 Works in real time…

 Shadow mapping is used

in Pixar’s rendering software

Normal Mapping

Normal Mapping
 Store normals in texture

 Normals <x,y,z> stored in <r,g,b> values in texture

 Idea: Use low resolution mesh + high resolution normal map

 Normal map may change a lot, simulate fine details

 Low rendering complexity method for making low-resolution
geometry look like it’s much more detailed

Normal Mapping Example: Ogre
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 157)

Base color texture
(used this in place of
diffuse component)

Normal texture map

Texture mapped
Ogre (Uses mesh
normals)

Texture and normal
mapped Ogre (Uses
normal map to
modify mesh
normals)

Creating Normal Maps

 Many tools for creating normal map

 E.g. Nvidia texture tools for Adobe photoshop
 https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

Tangent Space Vectors

 Normals in normal map stored in object local coord. frame (or
tangent space)

 Object Local coordinate space? Axis positioned on surface of
object (NOT global x,y,z)

 Need Tangent, normal and bi-tangent vectors at each vertex
 z axis aligned with mesh normal at that point

 x, y axes at a tangent (and bi-tangent) to the surface

Tangent Space Vectors

 Normals stored in texture includes mesh transformation + local
deviation (e.g. bump)

 Reflection model must be evaluated in object’s local coordinate
(n, t, b)

 Need to transform view, light and normal vectors into object’s
local coordinate space

v

l

Need to transform

l, v and n into object

local coord.

Transforming V,L and N into Object’s Local
Coordinate Frame

 To transform a point P in the eye coordinate frame into a
corresponding point S in object’s local coordinate frame:

Point P in eye
coordinate frame

Point S in object’s local
coordinate frame

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal

Vertex 1 Attributes

layout (location) = 0

layout (location) = 1

VertexTangent

z

OpenGL Program

Vertex Shader

VertexPosition

VertexTexCoord

VertexNormal

VertexTangent

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

Vertex Shader

Transform normal and

tangent to eye space

….

Compute bi-normal vector

Form matrix to convert from

eye to local object coordinates

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

Vertex Shader

Get position in eye coordinates

….

Transform light and view

directions to tangent space

Fragment Shader

Receive Light, View directions

and TexCoord set in vertex shader

……

Declare Normal and Color maps

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Normal Mapping Example
OpenGL 4 Shading Language Cookbook (3rd edition) by David Wolff (pg 159)

x y yz x y z s t x

VertexPosition VertexTexCoordVertexNormal VertexTangent

z r g b

ColorTex

Normal Map Diffuse Color Map

Fragment Shader

Function to compute

Phong’s lighting model

Look up normal from

normal map

Rescale from [0,1] to

[-1,1] range

Look up diffuse coeff.

from color texture

Bump Mapping

Bump mapping

 by Blinn in 1978

 Inexpensive way of simulating wrinkles and bumps
on geometry

 Too expensive to model these geometrically

 Instead let a texture modify the normal at each pixel,
and then use this normal to compute lighting

geometry
Bump map

Stores heights: can derive normals

+ Bump mapped geometry
=

Bump mapping: Blinn’s method

 Idea: Distort the surface normal at point to be rendered

 Option a (left): Modify normal n along u, v axes to give n’
 In texture map, store how much to perturb n (bu and bv)

 Using bumpmap
 Look up bu and bv

 n’ = n + buT + bvB

(T and B are tangent and bi-tangent vectors)

 Note: N’ is not normalized

 Bump map code similar to normal map code.

 Just compute, use n’ instead of n

Bump mapping: Blinn’s method

 Option b (right): Store values of u, v as a heightfield
 Slope of consecutive columns determines how much n along u

 Slope of consecutive rows determines how much n along v

 Option c (Angel textbook): Encode using differential equations

Bump mapping: examples

Bump Mapping Vs Normal Mapping
 Bump mapping

 (Normals n=(nx , ny , nz) stored as
local distortion of face orientation.
Same bump map can be
tiled/repeated and reused for
many faces)

 Normal mapping

 Coordinates of normal (relative to
tangent space) are encoded in
color channels

 Normals stored combines

face orientation + plus distortion.
)

Displacement Mapping

 Uses a map to displace
the surface at each
position

 Offsets the position per
pixel or per vertex

 Offsetting per vertex is
easy in vertex shader

 Offsetting per pixel is
architecturally hard

Parallax Mapping
 Bump and normal maps increase surface detail, but do not

simulate:
 Parallax effects: Slanting of texture with view angle

 Blockage of one part of surface by another part

 Parallax mapping
 simulates parallax effects

 Looks up a texture location offset depending on view angle

 Different texture returned after offset

Normal map

Looks up here

Parallax map

Looks up here

Relief (or Parallax Occlusion) Mapping

 Parallax mapping approximates parallax

 Sometimes doesn’t work well for occlusion effects

 Implement a heightfield raytracer in a shader, detect blockage

 Pretty expensive, but looks amazing

Relief Mapping Example

Cool YouTube Video: https://youtu.be/EkLKhsRzE-g

https://youtu.be/EkLKhsRzE-g

Light Mapping

Light Maps

 Good shadows are complicated and expensive

 If light and object positions do not change, shadows do not
change

 Can “bake” the shadows into a texture map as a preprocess step

 During lighting, lightmap values are multiplied into resulting pixel

Apply this in

fragment shader

Specular Mapping

 Store specular in a map

 Use greyscale texture as a multiplier for specular component

Alpha Mapping

 Represent the alpha channel with a texture

 Can give complex outlines, used for plants

Render Bush

on 1 polygon

Render Bush

on polygon rotated

90 degrees

Alpha Mapping

 Rotation trick works at eye level (left image)

 Breaks down from above (right image)

Mesh Parametrization

Mesh Parametrization

Parametrization in Practice

 Texture creation and parametrization is an art form

 Option: Unfold the surface

Parametrization in Practice

 Option: Create a Texture Atlas

 Break large mesh into smaller pieces

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

 Real Time Rendering by Akenine-Moller, Haines and Hoffman

