Computer Graphics (CS 543) Lecture 10a: Sphere Maps, Viewport Transformation & Hidden Surface Removal

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Sphere Environment Map

• Cube can be replaced by a sphere (sphere map)

Sphere Mapping

- Original environmental mapping technique
- Proposed by Blinn and Newell
- Map longitude and latitude to texture coordinates
- OpenGL supports sphere mapping
- Requires a circular texture map equivalent to an image taken with a fisheye lens

Sphere Map

 A sphere maps is basically a photograph of a reflective sphere in an environment

Paul DeBevec, www.debevec.org

Sphere map

• example

Sphere map (texture)

Sphere map applied on torus

Capturing a Sphere Map

Viewport Transformation

Viewport Transformation

- After projection, clipping, do viewport transformation
- Clipping eliminates lines outside view volume, truncates lines partially in-out
- More on clipping later

Viewport Transformation

Maps CVV (x, y) -> screen (x, y) coordinates

Viewport Transformation: What of z?

- Also maps z (pseudo-depth) from [-1,1] to [0,1]
- [0,1] pseudo-depth stored in depth buffer,
 - Used for Depth testing (Hidden Surface Removal)

Hidden Surface Removal

Rasterization

- Rasterization Determines what pixels to color to draw a shape
 - Generates set of fragments
 - Fragments: Potential pixels, closest fragment becomes pixel
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g lines, circles, triangles, polygons)

Rasterization: Determine Pixels (fragments) each primitive covers

Hidden surface Removal

- Drawing polygonal faces on screen consumes CPU cycles
- User cannot see every surface in scene
- To save time, draw only surfaces we see
- Methods to eliminate surfaces we cannot see?

1. Occluded surfaces: hidden surface removal (visibility)

2. Back faces: back face culling

Hidden surface Removal

- Surfaces we cannot see and elimination methods:
 - **3. Faces outside view volume:** viewing frustrum culling

Classes of HSR techniques:

- Object space techniques: applied before rasterization
- Image space techniques: applied after rasterization

Visibility (hidden surface removal)

- Overlapping opaque polygons
- Correct visibility? Draw only the closest polygon
 - (remove occluded/hidden surfaces)

wrong visibility

Correct visibility

Image Space Approach

- Start from pixel, work backwards into the scene
- Through each pixel, (nm for an n x m frame buffer) find closest of k polygons
- Complexity O(nmk)
- Examples:
 - Ray tracing
 - z-buffer : OpenGL

OpenGL - Image Space Approach

Paint pixel with color of closest object

for (each pixel in image) {
determine the object closest to the pixel
draw the pixel using the object's color

Correct Final image

Step 1: Initialize the depth buffer

Step 2: Draw blue polygon (actually order does not affect final result)

- 1. Determine group of pixels corresponding to blue polygon
- 2. Figure out z value of blue polygon for each covered pixel (0.5)
- 3. For each covered pixel, z = 0.5 is less than 1.0
 - 1. Smallest z so far = 0.5, color = blue

Step 3: Draw the yellow polygon

- 1. Determine group of pixels corresponding to yellow polygon
- 2. Figure out z value of yellow polygon for each covered pixel (0.3)
- 3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

z-buffer drawback: wastes resources drawing and redrawing faces

OpenGL HSR Commands

- 3 main commands to do HSR
- glutInitDisplayMode (GLUT_DEPTH | GLUT_RGB) creates depth buffer
- **glEnable (GL_DEPTH_TEST)** enables depth testing
- **glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)** initializes depth buffer every time we draw a new picture

1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0

Z-buffer Algorithm

- Initialize every pixel's z value to 1.0
- rasterize every polygon
- For each pixel in polygon, find its z value (interpolate)
- Track smallest z value so far at each pixel
- As we rasterize polygon, for each pixel in polygon
 - If polygon's z at this pixel < current min z through pixel
 - Paint pixel with polygon's color

Note: know depths at vertices. Interpolate for interior z_polygon_pixel(x, y) depths

Combined z-buffer and Gouraud Shading

(Hill Book, 2nd edition, pg 438)

• Can combine shading and HSR through scan line algorithm

```
for(int y = ybott; y <= ytop; y++) // for each scan line
 for(each polygon){
 find xleft and xright
 find dleft, dright, and dinc
 find colorleft, colorright, and colorinc
 for(int x = xleft, c = colorleft, d = dleft; x <= xright;
                        x++, c+= colorinc, d+= dinc)
 if(d < d[x][y])
   put c into the pixel at (x, y)
   d[x][y] = d; // update closest depth
```


Perspective Transformation: Z-Buffer Depth Compression

 Pseudodepth calculation: Recall we chose parameters (a and b) to map z from range [near, far] to pseudodepth range[-1,1]

Z-Buffer Depth Compression

- This mapping is almost linear close to eye
- Non-linear further from eye, approaches asymptote
- Also limited number of bits
- Thus, two z values close to far plane may map to same pseudodepth: *Errors!!*

Painter's HSR Algorithm

- Render polygons farthest to nearest
- Similar to painter layers oil paint

Viewer sees B behind A

Render B then A

Depth Sort

- Requires sorting polygons (based on depth)
 - O(n log n) complexity to sort n polygon depths
 - Not every polygon is clearly in front or behind other polygons

Easy Cases

• Case a: A lies behind all polygons

• Case b: Polygons overlap in z but not in x or y

Hard Cases

Overlap in (x,y) and z ranges

cyclic overlap

penetration

Back Face Culling

- Back faces: faces of opaque object that are "pointing away" from viewer
- Back face culling: do not draw back faces (saves resources)

• How to detect back faces?

Back Face Culling

- Goal: Test if a face F is is backface
- How? Form vectors
 - View vector, V
 - Normal N to face F

Backface test: F is backface if N.V < 0 why??

Back Face Culling: Draw mesh front faces

View-Frustum Culling

- Goal: Remove objects outside view frustum
- Done by 3D clipping algorithm (e.g. Liang-Barsky)

Ray Tracing

- Ray tracing is another image space method
- Ray tracing: Cast a ray from eye through each pixel into world.
- Ray tracing algorithm figures out: what object seen in direction through a certain pixel?

References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, Chapter 9