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Perspective Projection

 Projection – map the object  from 3D space to 
2D screen 

x

y

z

Perspective()
Frustrum( )



Perspective Projection: Classical 
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Perspective Projection: Classical

 So (x*,y*) projection of point, (x,y,z) unto near plane N is 
given as:

 Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a 
near plane at N = 1?
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Pseudodepth

 Classical perspective projection projects (x,y) coordinates to 
(x*, y*), drops z coordinates

 But we need z to find closest object (depth testing)!!!
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Map to same (x*,y*)
Compare their z values?



Perspective Transformation

 Perspective transformation maps actual z distance of 
perspective view volume to range [ –1 to 1] (Pseudodepth) 
for canonical view volume

-Near

-Far

-1 1

Canonical view volume

Actual view volume

Pseudodepth

Actual depth
We want perspective
Transformation and 
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b



Perspective Transformation

 We want to transform viewing frustum 
volume into canonical view volume
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Perspective Transformation using 
Pseudodepth

 Choose a, b so as z varies from Near to Far, pseudodepth
varies from –1 to 1 (canonical cube)

 Boundary conditions

 z* = -1 when z = -N 

 z* = 1 when z = -F
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Transformation of z: Solve for a and b

 Solving:

 Use boundary conditions

 z* = -1 when z = -N………(1) 

 z* = 1 when z = -F………..(2)

 Set up simultaneous equations
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Transformation of z: Solve for a and b

 Multiply both sides of (1) by -1 

 Add eqns (2) and (3)

 Now put (4) back into (3)
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Transformation of z: Solve for a and b

 Put solution for a back into eqn (3)

 So 
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What does this mean?

 Original point z in original view volume, transformed 
into z* in canonical view volume

 where
-Near -Far

Canonical view 
volume

Actual view 
volume
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Homogenous Coordinates

 Want to express projection transform as 4x4 matrix

 Previously, homogeneous coordinates of 

P = (Px,Py,Pz)  =>  (Px,Py,Pz,1)

 Introduce arbitrary scaling factor, w, so that 

P = (wPx, wPy, wPz, w)     (Note: w is non-zero)

 For example, the point P = (2,4,6) can be expressed as

 (2,4,6,1) 

 or (4,8,12,2) where w=2 

 or (6,12,18,3) where  w = 3, or….

 To convert from homogeneous back to ordinary coordinates, 
first divide all four terms by w and discard 4th term



Perspective Projection Matrix

 Recall Perspective Transform

 We have: 

 In matrix form:
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Perspective 
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Transformed
Vertex

Transformed Vertex 
after dividing by 4th term



Perspective Projection Matrix

 In perspective transform matrix, already solved for a 
and b:

 So, we have transform matrix to transform z 
values
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Perspective Projection

 Not done yet!! Can now transform z!

 Also need to transform the x = (left, right) and y = (bottom, top) 
ranges of viewing frustum to [-1, 1]

 Similar to glOrtho, we need to translate and scale previous matrix 
along x and y to get final projection transform matrix

 we translate by
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Scale by:
 2/(right – left) in x

 2/(top – bottom) in y
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Perspective Projection

 Translate along x and y to line up center with origin of CVV
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Multiply by translation matrix: 
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Perspective Projection

 To bring view volume size down to size of of CVV, scale by 

 2/(right – left) in x

 2/(top – bottom) in y

 Multiply by scale matrix: 
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Perspective Projection Matrix

glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane
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Perspective Transformation

 After perspective transformation, viewing 
frustum volume is transformed into canonical 
view volume
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Geometric Nature  of Perspective 
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform



Normalization Transformation

original clipping
volume original object new clipping

volume

distorted object

projects correctly
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