
Computer Graphics (CS 543)
Lecture 7a: Derivation of Perspective

Projection Transformation

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Perspective Projection

 Projection – map the object from 3D space to
2D screen

x

y

z

Perspective()
Frustrum()

Perspective Projection: Classical

(0,0,0)

N

Projection plane

Eye (COP)

(x,y,z)

(x’,y’,z’)

-z

- z

y

Based on similar triangles:

y’ N
y -z

N
y’ = y x

-z

=

Near Plane
(VOP)

+ z

Perspective Projection: Classical

 So (x*,y*) projection of point, (x,y,z) unto near plane N is
given as:

 Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for a
near plane at N = 1?

z

N
y

z

N
xyx ,**,

)333.0,666.0(
5.1

1
5.0,

5.1

1
1,**,

z

N
y

z

N
xyx

Pseudodepth

 Classical perspective projection projects (x,y) coordinates to
(x*, y*), drops z coordinates

 But we need z to find closest object (depth testing)!!!

(0,0,0)

z

Map to same (x*,y*)
Compare their z values?

Perspective Transformation

 Perspective transformation maps actual z distance of
perspective view volume to range [–1 to 1] (Pseudodepth)
for canonical view volume

-Near

-Far

-1 1

Canonical view volume

Actual view volume

Pseudodepth

Actual depth
We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b

Perspective Transformation

 We want to transform viewing frustum
volume into canonical view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Perspective Transformation using
Pseudodepth

 Choose a, b so as z varies from Near to Far, pseudodepth
varies from –1 to 1 (canonical cube)

 Boundary conditions

 z* = -1 when z = -N

 z* = 1 when z = -F

z

baz

z

N
y

z

N
xzyx ,,**,*,

-Near -Far

Canonical view
volume

Actual view
volume

Pseudodepth

Actual depth

1-1

Z*

Z

Transformation of z: Solve for a and b

 Solving:

 Use boundary conditions

 z* = -1 when z = -N………(1)

 z* = 1 when z = -F………..(2)

 Set up simultaneous equations

z

baz
z

*

)1........(1 baNN
N

baN

)2........(1 baFF
F

baF

Transformation of z: Solve for a and b

 Multiply both sides of (1) by -1

 Add eqns (2) and (3)

 Now put (4) back into (3)

)1........(baNN

)2........(baFF

)3........(baNN

aFaNNF

)4.........(
)(

NF

NF

FN

NF
a

Transformation of z: Solve for a and b

 Put solution for a back into eqn (3)

 So

b
NF

NFN
N

)(

)3........(baNN

NF

NFN
Nb

)(

NF

NF

NF

NNFNNF

NF

NFNNFN
b

2)()(22

NF

NF
a

)(

NF

FN
b

2

What does this mean?

 Original point z in original view volume, transformed
into z* in canonical view volume

 where
-Near -Far

Canonical view
volume

Actual view
volume

1 -1

Original
vertex z value

Transformed
vertex z* value

z

baz
z

*

NF

NF
a

)(

NF

FN
b

2

Homogenous Coordinates

 Want to express projection transform as 4x4 matrix

 Previously, homogeneous coordinates of

P = (Px,Py,Pz) => (Px,Py,Pz,1)

 Introduce arbitrary scaling factor, w, so that

P = (wPx, wPy, wPz, w) (Note: w is non-zero)

 For example, the point P = (2,4,6) can be expressed as

 (2,4,6,1)

 or (4,8,12,2) where w=2

 or (6,12,18,3) where w = 3, or….

 To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4th term

Perspective Projection Matrix

 Recall Perspective Transform

 We have:

 In matrix form:

1

)(

0100

00

000

000

z

baz
z

N
y

z

N
x

wz

bazw

wNy

wNx

w

wz

wy

wx

ba

N

N

z

baz

z

N
y

z

N
xzyx ,,**,*,

z

N
xx

*
z

N
yy

*
z

baz
z

*

Perspective
Transform Matrix

Original
vertex

Transformed
Vertex

Transformed Vertex
after dividing by 4th term

Perspective Projection Matrix

 In perspective transform matrix, already solved for a
and b:

 So, we have transform matrix to transform z
values

1

)(

0100

00

000

000

z

baz
z

N
y

z

N
x

wP

baPw

wNP

wNP

w

wP

wP

wP

ba

N

N

z

z

y

x

z

y

x

NF

NF
a

)(

NF

FN
b

2

Perspective Projection

 Not done yet!! Can now transform z!

 Also need to transform the x = (left, right) and y = (bottom, top)
ranges of viewing frustum to [-1, 1]

 Similar to glOrtho, we need to translate and scale previous matrix
along x and y to get final projection transform matrix

 we translate by
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Scale by:
 2/(right – left) in x

 2/(top – bottom) in y

1 -1

x

y

left right
bottom

top

Perspective Projection

 Translate along x and y to line up center with origin of CVV
 –(right + left)/2 in x

 -(top + bottom)/2 in y

 Multiply by translation matrix:

1 -1

x

y

left right

bottom

top

1000

0100

2/)(010

2/)(001

bottomtop

leftright

Line up centers
Along x and y

Perspective Projection

 To bring view volume size down to size of of CVV, scale by

 2/(right – left) in x

 2/(top – bottom) in y

 Multiply by scale matrix:

1 -1

x

y

left right

bottom

top

Scale size down
along x and y

1000

0100

00
2

0

000
2

bottomtop

leftright

Perspective Projection Matrix

glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane

0100

2)(
00

0
2

0

00
2

NF

FN

NF

NF
bottomtop

bottomtop

bottomtop

N
leftright

leftright

leftright

N

0100

00

000

000

1000

0100

2/)(010

2/)(001

1000

0100

00
2

0

000
2

ba

N

N

bottomtop

leftright

bottomtop

leftright

Scale

Final Perspective
Transform Matrix

Translate

Previous
Perspective
Transform
Matrix

Perspective Transformation

 After perspective transformation, viewing
frustum volume is transformed into canonical
view volume

(-1, -1, 1)

(1, 1, -1)

Canonical View Volume

x

y

z

Geometric Nature of Perspective
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform

Normalization Transformation

original clipping
volume original object new clipping

volume

distorted object

projects correctly

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

