Perspective Projection

- Projection – map the object from 3D space to 2D screen

```
Perspective()
Frustrum()
```
Perspective Projection: Classical

Based on similar triangles:
\[
\frac{y'}{y} = \frac{N}{-z}
\]
\[
y' = y \times \frac{N}{-z}
\]
Perspective Projection: Classical

- So \((x^*, y^*)\) projection of point, \((x, y, z)\) unto near plane \(N\) is given as:

\[
(x^*, y^*) = \left(x \frac{N}{-z}, y \frac{N}{-z} \right)
\]

- Numerical example:

Q. Where on the viewplane does \(P = (1, 0.5, -1.5)\) lie for a near plane at \(N = 1\)?

\[
(x^*, y^*) = \left(x \frac{N}{-z}, y \frac{N}{-z} \right) = \left(1 \times \frac{1}{1.5}, 0.5 \times \frac{1}{1.5} \right) = (0.666, 0.333)
\]
Pseudodepth

- Classical perspective projection projects \((x, y)\) coordinates to \((x^*, y^*)\), drops \(z\) coordinates

- But we need \(z\) to find closest object (depth testing)!!!
Perspective Transformation

- **Perspective transformation** maps actual z distance of perspective view volume to range \([-1 \text{ to } 1]\) (**Pseudodepth**) for canonical view volume.

We want perspective Transformation and NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b
We want to transform viewing frustum volume into canonical view volume.
Perspective Transformation using Pseudodepth

\[(x^*, y^*, z^*) = \left(\frac{N}{-z}, \frac{N}{-z}, \frac{az + b}{-z} \right)\]

- Choose \(a, b\) so as \(z\) varies from Near to Far, pseudodepth varies from \(-1\) to \(1\) (canonical cube)

- Boundary conditions
 - \(z^* = -1\) when \(z = -N\)
 - \(z^* = 1\) when \(z = -F\)
Transformation of z: Solve for a and b

- **Solving:**
 \[z^* = \frac{az + b}{-z} \]

- **Use boundary conditions**
 - $z^* = -1$ when $z = -N.........(1)$
 - $z^* = 1$ when $z = -F.........(2)$

- **Set up simultaneous equations**
 \[-1 = \frac{-aN + b}{N} \Rightarrow -N = -aN + b........(1) \]
 \[1 = \frac{-aF + b}{F} \Rightarrow F = -aF + b........(2) \]
Transformation of z: Solve for a and b

\[-N = -aN + b \ldots \ldots (1)\]

\[F = -aF + b \ldots \ldots (2)\]

- Multiply both sides of (1) by -1
 \[N = aN - b \ldots \ldots (3)\]

- Add eqns (2) and (3)
 \[F + N = aN - aF\]

 \[\Rightarrow a = \frac{F + N}{N - F} = \frac{-(F + N)}{F - N} \ldots \ldots (4)\]

- Now put (4) back into (3)
Transformation of z: Solve for a and b

- Put solution for a back into eqn (3)

\[
N = aN - b \ldots \ldots\text{(3)}
\]

\[
\Rightarrow N = \frac{-N(F + N)}{F - N} - b
\]

\[
\Rightarrow b = -N - \frac{-N(F + N)}{F - N}
\]

\[
\Rightarrow b = \frac{-N(F - N) - N(F + N)}{F - N} = \frac{-NF + N^2 - NF - N^2}{F - N} = \frac{-2NF}{F - N}
\]

- So

\[
a = \frac{-(F + N)}{F - N}
\]

\[
b = \frac{-2FN}{F - N}
\]
What does this mean?

- Original point \(z \) in original view volume, transformed into \(z^* \) in canonical view volume

\[
z^* = \frac{az + b}{-z}
\]

- where

\[
a = \frac{-(F + N)}{F - N}
\]

\[
b = \frac{-2FN}{F - N}
\]
Homogenous Coordinates

- Want to express projection transform as 4x4 matrix
- Previously, homogeneous coordinates of $P = (Px,Py,Pz)$ => $(Px,Py,Pz,1)$
- Introduce arbitrary scaling factor, w, so that
 $P = (wPx, wPy, wPz, w)$ (Note: w is non-zero)
- For example, the point $P = (2,4,6)$ can be expressed as
 - $(2,4,6,1)$
 - or $(4,8,12,2)$ where $w=2$
 - or $(6,12,18,3)$ where $w = 3$, or....
- To convert from homogeneous back to ordinary coordinates, first divide all four terms by w and discard 4th term.
Perspective Projection Matrix

- Recall Perspective Transform

\[(x^*, y^*, z^*) = \left(\frac{N}{-z}, \frac{N}{-z}, \frac{az + b}{-z} \right)\]

- We have:

\[x^* = x \frac{N}{-z} \quad y^* = y \frac{N}{-z} \quad z^* = \frac{az + b}{-z}\]

- In matrix form:

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
w x \\
w y \\
w z \\
w
\end{pmatrix}
=
\begin{pmatrix}
w N x \\
w N y \\
w (a z + b) \\
-w z
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x \frac{N}{-z} \\
\frac{N}{-z} \\
\frac{a z + b}{-z} \\
\frac{-z}{1}
\end{pmatrix}
\]

Perspective Transform Matrix **Original vertex** **Transformed Vertex** **Transformed Vertex after dividing by 4\(^{th}\) term**
Perspective Projection Matrix

\[
\begin{pmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
wP_x \\
wP_y \\
wP_z \\
w
\end{pmatrix}
=
\begin{pmatrix}
wNP_x \\
wNP_y \\
w(aP_z + b) \\
-wP_z
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x \frac{N}{-z} \\
y \frac{N}{-z} \\
\frac{az + b}{-z} \\
\frac{-z}{1}
\end{pmatrix}
\]

\[
a = \frac{-(F + N)}{F - N} \quad \quad b = \frac{-2FN}{F - N}
\]

- In perspective transform matrix, already solved for \(a\) and \(b\):
- So, we have transform matrix to transform \(z\) values
Perspective Projection

- Not done yet!! Can now transform z!
- Also need to transform the \(x = (\text{left, right}) \) and \(y = (\text{bottom, top}) \) ranges of viewing frustum to \([-1, 1]\)
- Similar to glOrtho, we need to translate and scale previous matrix along x and y to get final projection transform matrix
- we translate by
 - \(-\text{(right + left)}/2 \) in x
 - \(-\text{(top + bottom)}/2 \) in y
- Scale by:
 - \(2/\text{(right} - \text{left)} \) in x
 - \(2/\text{(top} - \text{bottom)} \) in y
Perspective Projection

- Translate along x and y to line up center with origin of CVV
 - \(-(\text{right} + \text{left})/2\) in x
 - \(-\text{(top} + \text{bottom})/2\) in y

- Multiply by translation matrix:

\[
\begin{pmatrix}
1 & 0 & 0 & -\left(\text{right} + \text{left}\right)/2 \\
0 & 1 & 0 & -\left(\text{top} + \text{bottom}\right)/2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Line up centers along x and y
Perspective Projection

- To bring view volume size down to size of CVV, scale by
 - $\frac{2}{\text{right} - \text{left}}$ in x
 - $\frac{2}{\text{top} - \text{bottom}}$ in y

- Multiply by scale matrix:

$$
\begin{pmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

Scale size down along x and y
Perspective Projection Matrix

\[
\begin{vmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\times
\begin{vmatrix}
1 & 0 & 0 & -(\text{right} + \text{left}) / 2 \\
0 & 1 & 0 & -(\text{top} + \text{bottom}) / 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
\times
\begin{vmatrix}
N & 0 & 0 & 0 \\
0 & N & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & -1 & 0
\end{vmatrix}
\]

\text{glFrustum}(\text{left, right, bottom, top, N, F}) \quad \text{N = near plane, F = far plane}
After perspective transformation, viewing frustum volume is transformed into canonical view volume

Canonical View Volume

(-1, -1, 1) → (1, 1, -1)
Geometric Nature of Perspective Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform
Normalization Transformation

original clipping volume

original object

new clipping volume

distorted object projects correctly

$z = -x$

$z = x$

$z = -\text{far}$

$z = 1$

$x = -1$

$x = 1$

$z = -1$
References