Orthographic Projection

- How? Draw parallel lines from each object vertex
- The projection center is at infinite
- In short, use \((x,y)\) coordinates, just drop \(z\) coordinates
Perspective Projection

- After setting view volume, then projection transformation

- Projection?
 - **Classic**: Converts 3D object to corresponding 2D on screen
 - How? Draw line from object to projection center
 - Calculate where each intersects projection plane
The Problem with Classic Projection

- Keeps (x, y) coordinates for drawing, drops z
- We may need z. Why?

```
x_p = x
y_p = y
z_p = 0
```

Classic Projection Loses z value
Normalization: Keeps z Value

- Most graphics systems use \textit{view normalization}
- **Normalization:** convert all other projection types to orthogonal projections with the \textit{default view volume}
Parallel Projection

- **normalization** \Rightarrow find 4x4 matrix to transform **user-specified view volume** to **canonical view volume (cube)**

```
glOrtho(left, right, bottom, top, near, far)
```
Parallel Projection: Ortho

- Parallel projection: 2 parts
 1. **Translation**: centers view volume at origin
Parallel Projection: Ortho

2. **Scaling**: reduces user-selected cuboid to canonical cube (dimension 2, centered at origin)
Parallel Projection: Ortho

- Translation lines up midpoints: E.g. midpoint of $x = (\text{right + left})/2$
- Thus translation factors:
 - $-(\text{right + left})/2$, $-(\text{top + bottom})/2$, $-(\text{far+near})/2$
- Translation matrix:

$$
\begin{bmatrix}
1 & 0 & 0 & -(\text{right + left})/2 \\
0 & 1 & 0 & -(\text{top + bottom})/2 \\
0 & 0 & 1 & -(\text{far + near})/2 \\
0 & 0 & 0 & 1
\end{bmatrix}
$$
Parallel Projection: Ortho

- Scaling factor: ratio of ortho view volume to cube dimensions
- Scaling factors: \(\frac{2}{\text{right} - \text{left}} \), \(\frac{2}{\text{top} - \text{bottom}} \), \(\frac{2}{\text{far} - \text{near}} \)
- Scaling Matrix \(M_2 \):

\[
\begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Parallel Projection: Ortho

Concatenating **Translation** x **Scaling**, we get Ortho Projection matrix

\[
\begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & 0 \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & 0 \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & -(\text{right} + \text{left})/2 \\
0 & 1 & 0 & -(\text{top} + \text{bottom})/2 \\
0 & 0 & 1 & -(\text{far} + \text{near})/2 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{2}{\text{right} - \text{left}} & 0 & 0 & -\frac{\text{right} - \text{left}}{\text{right} - \text{left}} \\
0 & \frac{2}{\text{top} - \text{bottom}} & 0 & -\frac{\text{top} + \text{bottom}}{\text{top} + \text{bottom}} \\
0 & 0 & \frac{2}{\text{far} - \text{near}} & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Final Ortho Projection

- Set $z = 0$
- Equivalent to the homogeneous coordinate transformation

\[
M_{\text{orth}} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- Hence, general orthogonal projection in 4D is

\[P = M_{\text{orth}}ST\]
References