
Computer Graphics 543
Lecture 5a: Rotations and Matrix

Concatenation

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Rotating in 3D

 Many degrees of freedom. Rotate about what axis?

 3D rotation: about a defined axis

 Different transform matrix for:

 Rotation about x-axis

 Rotation about y-axis

 Rotation about z-axis

x

y

z

+

Rotating in 3D

 New terminology

 X-roll: rotation about x-axis

 Y-roll: rotation about y-axis

 Z-roll: rotation about z-axis

 Which way is +ve rotation

 Look in –ve direction (into +ve arrow)

 CCW is +ve rotation

x

y

z

+

Rotating in 3D

z x
x

x
x

yy

y
y

z

z z

Rotating in 3D

 For a rotation angle, about an axis

 Define:

 cosc sins

1000

00

00

0001

cs

sc
Rx

x-roll or (RotateX)

Rotating in 3D

1000

00

0010

00

cs

sc

Ry

y-roll (or RotateY)

1000

0100

00

00

cs

sc

Rz

z-roll (or RotateZ)

Rules:

•Write 1 in rotation row,

column

•Write 0 in the other

rows/columns

•Write c,s in rect pattern

Example: Rotating in 3D

1

964.1

1

6.4

1

4

1

3

1000

00

0010

00

cs

sc

Q

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: c = cos(30) = 0.866, s = sin(30) = 0.5, and

Line 1: (3 x c) + (1 x 0) + (4 x s) + (1 x 0)

= (3 x 0.866) + (4 x 0.5) = 4.6

x y

z

u

P

Q

3D Rotation

 Rotate(angle, ux, uy, uz): rotate by angle β about an arbitrary
axis (a vector) passing through origin and (ux, uy, uz)

 Note: Angular position of u specified as azimuth/longitude (Θ)
and latitude (φ)

(ux, uy, uz)

Origin β

Approach 1: 3D Rotation About
Arbitrary Axis

 Can compose arbitrary rotation as combination of:

 X-roll (by an angle β1)

 Y-roll (by an angle β2)

 Z-roll (by an angle β3)

)()()(123 xyz RRRM

Read in reverse order

Approach 1: 3D Rotation using Euler
Theorem

 Classic: use Euler’s theorem

 Euler’s theorem: any sequence of rotations = one
rotation about some axis

 Want to rotate about arbitrary axis u through origin

 Our approach:

1. Use two rotations to align u and x-axis

2. Do x-roll through angle

3. Negate two previous rotations to de-align u and x-axis

 Note: Angular position of u specified as azimuth (Θ)
and latitude (φ)

 First try to align u with x axis

Approach 1: 3D Rotation using Euler
Theorem

Approach 1: 3D Rotation using Euler
Theorem

 Step 1: Do y-roll to line up rotation axis with x-y plane

)(yR

u

Θ

xz

y

Approach 1: 3D Rotation using Euler
Theorem

 Step 2: Do z-roll to line up rotation axis with x axis

u

-φ

xz

y

)()(yz RR

Approach 1: 3D Rotation using Euler
Theorem

 Remember: Our goal is to do rotation by β around u

 But axis u is now lined up with x axis. So,

 Step 3: Do x-roll by β around axis u

u

z

y

β

)()()(yzx RRR

Approach 1: 3D Rotation using Euler
Theorem

 Next 2 steps are to return vector u to original position

 Step 4: Do z-roll in x-y plane

u

φ

xz

y

)()()()(yzxz RRRR

Approach 1: 3D Rotation using Euler
Theorem

 Step 5: Do y-roll to return u to original position

u

Θ

xz

y

)()()()()()(yzxzyu RRRRRR

Approach 2: Rotation using
Quaternions

 Extension of imaginary numbers from 2 to 3 dimensions

 Requires 1 real and 3 imaginary components i, j, k

 Quaternions can express rotations on sphere smoothly
and efficiently

q=q0+q1i+q2j+q3k

Approach 2: Rotation using
Quaternions

 Derivation skipped! Check answer

 Solution has lots of symmetry

1000

0)1()1()1(

0)1()1()1(

0)1()1()1(

)(
2

2

2

zxzyyzx

xyzyzyx

yxzzxyx

ccscsc

scccsc

scsccc

R
uuuuuuu

uuuuuuu

uuuuuuu

 cosc sins Arbitrary axis u

Inverse Matrices

 Can compute inverse matrices by general formulas

 But some easy inverse transform observations

 Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

 Scaling: S-1 (sx, sy, sz) = S (1/sx, 1/sy, 1/sz)

 Rotation: R -1(q) = R(-q)

 Holds for any rotation matrix

Instancing

 During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

 Can declare one copy of each shape in scene

 E.g. declare 1 mesh for soldier, 500 instances to create army

 Then apply instance transformation to its vertices to

Scale

Orient

Locate

Rotation About Arbitrary Point other
than the Origin

 Default rotation matrix is about origin

 How to rotate about any arbitrary point pf (Not origin)?

 Move fixed point to origin T(-pf)

 Rotate R()

 Move fixed point back T(pf)

So, M = T(pf) R() T(-pf)

T(pf)
T(-pf) R()

Scale about Arbitrary Center

 Similary, default scaling is about origin

 To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz)

1. Translate object by T(-Px, -Py, -Pz) so P coincides with origin

2. Scale object by (Sx, Sy, Sz)

3. Translate object back: T(Px, Py, Py)

 In matrix form: T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P

11000

100

010

001

1000

000

000

000

1000

100

010

001

1

'

'

'

z

y

x

Pz

Py

Px

S

S

S

Pz

Py

Px

z

y

x

z

y

x

Example

 Rotation about z axis by 30 degrees about a fixed point
(1.0, 2.0, 3.0)

 Remember last matrix specified in program (i.e.
translate matrix in example) is first applied

mat 4 m = Identity();

m = Translate(1.0, 2.0, 3.0)*

Rotate(30.0, 0.0, 0.0, 1.0)*

Translate(-1.0, -2.0, -3.0);

References

 Angel and Shreiner, Chapter 3

 Hill and Kelley, Computer Graphics Using OpenGL, 3rd

edition

