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Rotating in 3D

 Many degrees of freedom. Rotate about what axis?

 3D rotation: about a defined axis

 Different transform matrix for:

 Rotation about x-axis

 Rotation about y-axis

 Rotation about z-axis
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Rotating in 3D

 New terminology

 X-roll: rotation about x-axis

 Y-roll: rotation about y-axis

 Z-roll: rotation about z-axis

 Which way is +ve rotation

 Look in –ve direction (into +ve arrow)

 CCW is +ve rotation
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Rotating in 3D
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Rotating in 3D

 For a rotation angle,  about an axis

 Define:

 cosc  sins
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x-roll or (RotateX)



Rotating in 3D
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y-roll (or RotateY)

 



















 



1000

0100

00

00

cs

sc

Rz 

z-roll (or RotateZ)

Rules:

•Write 1 in rotation row, 

column

•Write 0 in the other 

rows/columns

•Write c,s in rect pattern



Example: Rotating in 3D
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Question: Using  y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: c = cos(30) = 0.866, s = sin(30) = 0.5, and

Line 1:   (3 x c) + (1 x 0)  + (4 x s) + (1 x 0) 

= (3 x 0.866) + (4 x 0.5) = 4.6
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3D Rotation

 Rotate(angle, ux, uy, uz): rotate by angle β about an arbitrary 
axis (a vector) passing through origin and (ux, uy, uz)

 Note: Angular position of u specified as azimuth/longitude (Θ )
and latitude (φ )

(ux, uy, uz)

Origin β



Approach 1: 3D Rotation About 
Arbitrary Axis

 Can compose arbitrary rotation as combination of:

 X-roll  (by an angle β1)

 Y-roll  (by an angle β2)

 Z-roll  (by an angle β3)
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Read in reverse order



Approach 1: 3D Rotation using Euler 
Theorem

 Classic: use Euler’s theorem

 Euler’s theorem: any sequence of rotations = one 
rotation about some axis

 Want to rotate  about arbitrary axis u through origin

 Our approach:

1. Use two rotations to align u and x-axis

2. Do x-roll through angle 

3. Negate two previous rotations to de-align u and x-axis



 Note: Angular position of u specified as azimuth (Θ )
and latitude (φ )

 First try to align u with x axis

Approach 1: 3D Rotation using Euler 
Theorem



Approach 1: 3D Rotation using Euler 
Theorem

 Step 1: Do y-roll to line up rotation axis with x-y plane
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Approach 1: 3D Rotation using Euler 
Theorem

 Step 2: Do z-roll to line up rotation axis with x axis
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Approach 1: 3D Rotation using Euler 
Theorem

 Remember: Our goal is to do rotation by β around u

 But axis u is now lined up with x axis. So, 

 Step 3: Do x-roll by β around axis u
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Approach 1: 3D Rotation using Euler 
Theorem

 Next 2 steps are to return vector u to original position

 Step 4: Do z-roll in x-y plane
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Approach 1: 3D Rotation using Euler 
Theorem

 Step 5: Do y-roll to return u to original position
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Approach 2: Rotation using 
Quaternions

 Extension of imaginary numbers from 2 to 3 dimensions

 Requires 1 real and 3 imaginary components i, j, k

 Quaternions can express rotations on sphere smoothly 
and efficiently

q=q0+q1i+q2j+q3k



Approach 2: Rotation using 
Quaternions

 Derivation skipped! Check answer

 Solution has lots of symmetry
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 cosc  sins Arbitrary axis u



Inverse Matrices

 Can compute inverse matrices by general formulas

 But some easy inverse transform observations

 Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz) 

 Scaling: S-1 (sx,  sy,  sz) = S ( 1/sx,  1/sy,   1/sz ) 

 Rotation: R -1(q) = R(-q)

 Holds for any rotation matrix



Instancing

 During modeling, often start with simple object centered at 
origin, aligned with axis, and unit size

 Can declare one copy of each shape in scene

 E.g. declare 1 mesh for soldier, 500 instances to create army

 Then apply instance transformation to its vertices to 

Scale 

Orient

Locate 



Rotation About Arbitrary Point other 
than the Origin

 Default rotation matrix is about origin

 How to rotate about any arbitrary point pf (Not origin)?

 Move fixed point to origin T(-pf)

 Rotate R() 

 Move fixed point back T(pf) 

So, M = T(pf) R() T(-pf)

T(pf)
T(-pf) R()



Scale about Arbitrary Center

 Similary, default scaling is about origin

 To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz) 

1. Translate object by T(-Px, -Py, -Pz) so P coincides with origin

2. Scale object by (Sx, Sy, Sz) 

3. Translate object back: T(Px, Py, Py)

 In matrix form:  T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P













































































































11000

100

010

001

1000

000

000

000

1000

100

010

001

1

'

'

'

z

y

x

Pz

Py

Px

S

S

S

Pz

Py

Px

z

y

x

z

y

x



Example

 Rotation about z axis by 30 degrees about a fixed point  
(1.0, 2.0, 3.0)

 Remember last matrix specified in program (i.e. 
translate matrix in example) is first applied

mat 4 m = Identity();

m = Translate(1.0, 2.0, 3.0)*

Rotate(30.0, 0.0, 0.0, 1.0)*

Translate(-1.0, -2.0, -3.0);
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