
Computer Graphics 543
Lecture 5a: Rotations and Matrix

Concatenation

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Rotating in 3D

 Many degrees of freedom. Rotate about what axis?

 3D rotation: about a defined axis

 Different transform matrix for:

 Rotation about x-axis

 Rotation about y-axis

 Rotation about z-axis

x

y

z

+

Rotating in 3D

 New terminology

 X-roll: rotation about x-axis

 Y-roll: rotation about y-axis

 Z-roll: rotation about z-axis

 Which way is +ve rotation

 Look in –ve direction (into +ve arrow)

 CCW is +ve rotation

x

y

z

+

Rotating in 3D

z x
x

x
x

yy

y
y

z

z z

Rotating in 3D

 For a rotation angle,  about an axis

 Define:

 cosc  sins

 
























1000

00

00

0001

cs

sc
Rx 

x-roll or (RotateX)

Rotating in 3D

 
























1000

00

0010

00

cs

sc

Ry 

y-roll (or RotateY)

 



















 



1000

0100

00

00

cs

sc

Rz 

z-roll (or RotateZ)

Rules:

•Write 1 in rotation row,

column

•Write 0 in the other

rows/columns

•Write c,s in rect pattern

Example: Rotating in 3D


































































1

964.1

1

6.4

1

4

1

3

1000

00

0010

00

cs

sc

Q

Question: Using y-roll equation, rotate P = (3,1,4) by 30 degrees:

Answer: c = cos(30) = 0.866, s = sin(30) = 0.5, and

Line 1: (3 x c) + (1 x 0) + (4 x s) + (1 x 0)

= (3 x 0.866) + (4 x 0.5) = 4.6

x y

z

u

P



Q





3D Rotation

 Rotate(angle, ux, uy, uz): rotate by angle β about an arbitrary
axis (a vector) passing through origin and (ux, uy, uz)

 Note: Angular position of u specified as azimuth/longitude (Θ)
and latitude (φ)

(ux, uy, uz)

Origin β

Approach 1: 3D Rotation About
Arbitrary Axis

 Can compose arbitrary rotation as combination of:

 X-roll (by an angle β1)

 Y-roll (by an angle β2)

 Z-roll (by an angle β3)

)()()(123  xyz RRRM 

Read in reverse order

Approach 1: 3D Rotation using Euler
Theorem

 Classic: use Euler’s theorem

 Euler’s theorem: any sequence of rotations = one
rotation about some axis

 Want to rotate  about arbitrary axis u through origin

 Our approach:

1. Use two rotations to align u and x-axis

2. Do x-roll through angle 

3. Negate two previous rotations to de-align u and x-axis

 Note: Angular position of u specified as azimuth (Θ)
and latitude (φ)

 First try to align u with x axis

Approach 1: 3D Rotation using Euler
Theorem

Approach 1: 3D Rotation using Euler
Theorem

 Step 1: Do y-roll to line up rotation axis with x-y plane

)(yR

u

Θ

xz

y

Approach 1: 3D Rotation using Euler
Theorem

 Step 2: Do z-roll to line up rotation axis with x axis

u

-φ

xz

y

)()( yz RR 

Approach 1: 3D Rotation using Euler
Theorem

 Remember: Our goal is to do rotation by β around u

 But axis u is now lined up with x axis. So,

 Step 3: Do x-roll by β around axis u

u

z

y

β

)()()( yzx RRR 

Approach 1: 3D Rotation using Euler
Theorem

 Next 2 steps are to return vector u to original position

 Step 4: Do z-roll in x-y plane

u

φ

xz

y

)()()()( yzxz RRRR 

Approach 1: 3D Rotation using Euler
Theorem

 Step 5: Do y-roll to return u to original position

u

Θ

xz

y

)()()()()()( yzxzyu RRRRRR 

Approach 2: Rotation using
Quaternions

 Extension of imaginary numbers from 2 to 3 dimensions

 Requires 1 real and 3 imaginary components i, j, k

 Quaternions can express rotations on sphere smoothly
and efficiently

q=q0+q1i+q2j+q3k

Approach 2: Rotation using
Quaternions

 Derivation skipped! Check answer

 Solution has lots of symmetry





























1000

0)1()1()1(

0)1()1()1(

0)1()1()1(

)(
2

2

2

zxzyyzx

xyzyzyx

yxzzxyx

ccscsc

scccsc

scsccc

R
uuuuuuu

uuuuuuu

uuuuuuu



 cosc  sins Arbitrary axis u

Inverse Matrices

 Can compute inverse matrices by general formulas

 But some easy inverse transform observations

 Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

 Scaling: S-1 (sx, sy, sz) = S (1/sx, 1/sy, 1/sz)

 Rotation: R -1(q) = R(-q)

 Holds for any rotation matrix

Instancing

 During modeling, often start with simple object centered at
origin, aligned with axis, and unit size

 Can declare one copy of each shape in scene

 E.g. declare 1 mesh for soldier, 500 instances to create army

 Then apply instance transformation to its vertices to

Scale

Orient

Locate

Rotation About Arbitrary Point other
than the Origin

 Default rotation matrix is about origin

 How to rotate about any arbitrary point pf (Not origin)?

 Move fixed point to origin T(-pf)

 Rotate R()

 Move fixed point back T(pf)

So, M = T(pf) R() T(-pf)

T(pf)
T(-pf) R()

Scale about Arbitrary Center

 Similary, default scaling is about origin

 To scale about arbitrary point P = (Px, Py, Pz) by (Sx, Sy, Sz)

1. Translate object by T(-Px, -Py, -Pz) so P coincides with origin

2. Scale object by (Sx, Sy, Sz)

3. Translate object back: T(Px, Py, Py)

 In matrix form: T(Px,Py,Pz) (Sx, Sy, Sz) T(-Px,-Py,-Pz) * P













































































































11000

100

010

001

1000

000

000

000

1000

100

010

001

1

'

'

'

z

y

x

Pz

Py

Px

S

S

S

Pz

Py

Px

z

y

x

z

y

x

Example

 Rotation about z axis by 30 degrees about a fixed point
(1.0, 2.0, 3.0)

 Remember last matrix specified in program (i.e.
translate matrix in example) is first applied

mat 4 m = Identity();

m = Translate(1.0, 2.0, 3.0)*

Rotate(30.0, 0.0, 0.0, 1.0)*

Translate(-1.0, -2.0, -3.0);

References

 Angel and Shreiner, Chapter 3

 Hill and Kelley, Computer Graphics Using OpenGL, 3rd

edition

