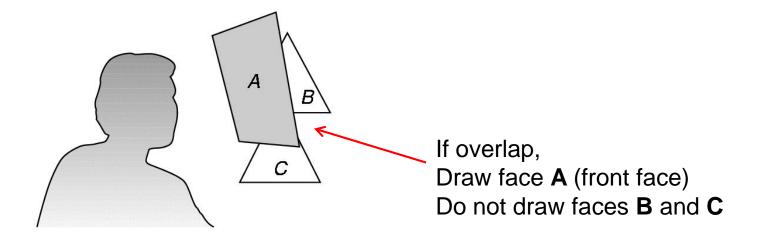
Computer Graphics (CS 543) Lecture 4b: Introduction to Transformations

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Hidden-Surface Removal

- If multiple surfaces overlap, we want to see only **closest**
- OpenGL uses *hidden-surface* technique called the *z-buffer* algorithm
- Z-buffer compares objects distances from viewer (depth) to determine closer objects



Using OpenGL's z-buffer algorithm

- Z-buffer uses an extra buffer, (the z-buffer), to store depth information, compare distance from viewer
- 3 steps to set up Z-buffer:
 - 1. In **main()** function glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH
 - 2. Enabled in **init()** function

glEnable(GL_DEPTH_TEST)

3. Clear depth buffer whenever we clear screen glClear (GL_COLOR_BUFFER_BIT | DEPTH_BUFFER_BIT)

3D Mesh file formats

- 3D meshes usually stored in 3D file format
- Format defines how vertices, edges, and faces are declared
- Over 400 different file formats
- **Polygon File Format (PLY)** used a lot in graphics
- Originally PLY was used to store 3D files from 3D scanner
- We will use PLY files in this class

Sample PLY File

```
ply
format ascii 1.0
comment this is a simple file
obj_info any data, in one line of free form text element vertex 3
property float x
property float y
property float z
element face 1
property list uchar int vertex_indices
end_header
-1 0 0
0 1 0
1 0 0
3 0 1 2
```

Georgia Tech Large Models Archive

Models

Stanford Bunny

- - Turbine Blade

Skeleton Hand

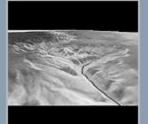
Dragon

Happy Buddha

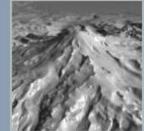
Horse

Visible Man Skin

Visible Man Bone



Grand Canyon



Angel

Stanford 3D Scanning Repository

Happy Buddha: 9 million faces

Lucy: 28 million faces

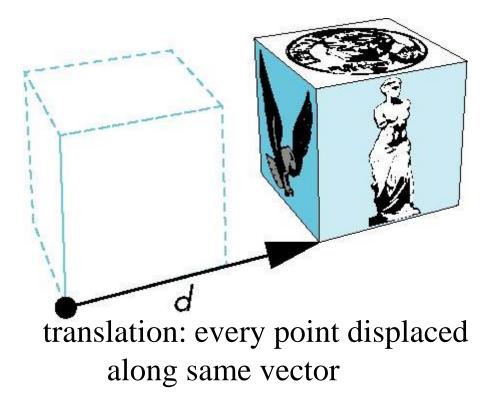
Introduction to Transformations

- May also want to transform objects by changing its:
 - Position (translation)
 - Size (scaling)
 - Orientation (rotation)
 - Shapes (shear)

Translation

Move each vertex by same distance d = (d_x, d_y, d_z)

object



Scaling

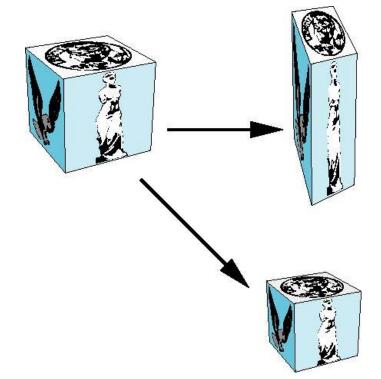
Expand or contract along each axis (about origin)

 $y'=s_{y}y$ $z'=s_{z}z$ p'=Sp

 $x' = s_x x$

where

 $\mathbf{S} = \mathbf{S}(s_x, s_y, s_z)$



Introduction to Transformations

• We can transform (translation, scaling, rotation, shearing, etc) object by applying matrix multiplications to object vertices

$$\begin{pmatrix} P_{x}' \\ P_{y}' \\ P_{z}' \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix} \leftarrow \underbrace{Original Vertex}_{Original Vertex}$$
Transformed Vertex

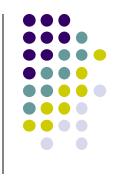
 Note: point (x,y,z) needs to be represented as (x,y,z,1), also called Homogeneous coordinates

Why Matrices?

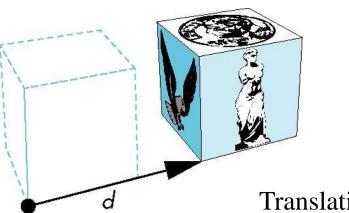
- Multiple transform matrices can be pre-multiplied
- One final resulting matrix applied (efficient!)
- For example:

transform 1 x transform 2 x transform 3

$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix} P_z$$
Transform Matrices can Be pre-multiplied Original Point



3D Translation Example



object

Translation of object

• **Example:** If we translate a point (2,2,2) by displacement (2,4,6), new location of point is (4,6,8)

Translate(2,4,6)

•Translate x: 2 + 2 = 4

■Translate y: 2 + 4 = 6

■Translate z: 2 + 6 = 8

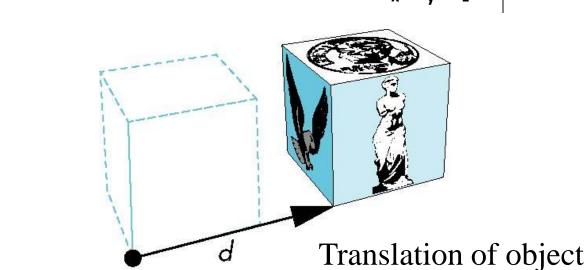
$$\begin{pmatrix} 4 \\ 6 \\ 8 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$
Translated point Translation Matrix Orig

Original point

Using matrix multiplication for translation

3D Translation

Translate object = Move each vertex by same distance d = (d_x, d_y, d_z)



Translate(dx,dy,dz)

•Where:

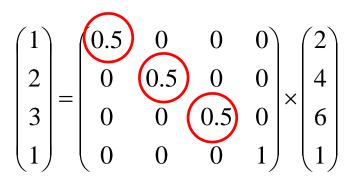
object

- x' = x + dx
- *y*'= *y* + *dy*
- z'=z+dz

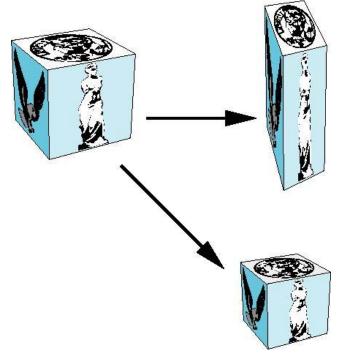
Scaling Example

If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5)Scaled point position = (1, 2, 3)

- ■Scale x: 2 x 0.5 = 1
- ■Scale y: 4 x 0.5 = 2
- ■Scale z: 6 x 0.5 = 3



Scale Matrix for Scale(0.5, 0.5, 0.5)

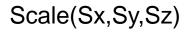


Scaling

Scale object = Move each object vertex by scale factor $S = (S_x, S_y, S_z)$ Expand or contract along each axis (relative to origin)

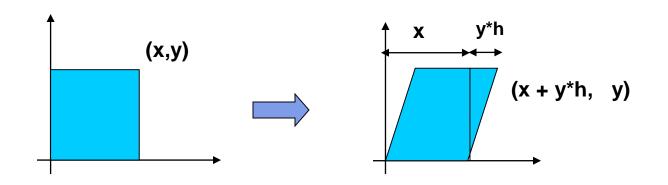
> $x' = s_x x$ $y' = s_y y$ $z' = s_z z$

Using matrix multiplication for scaling $\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$



Scale Matrix

Shearing

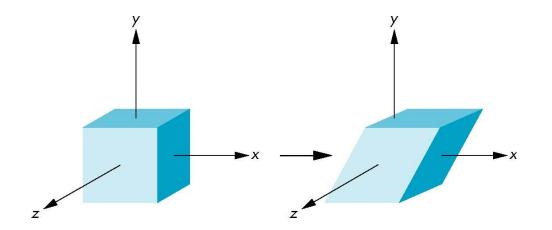


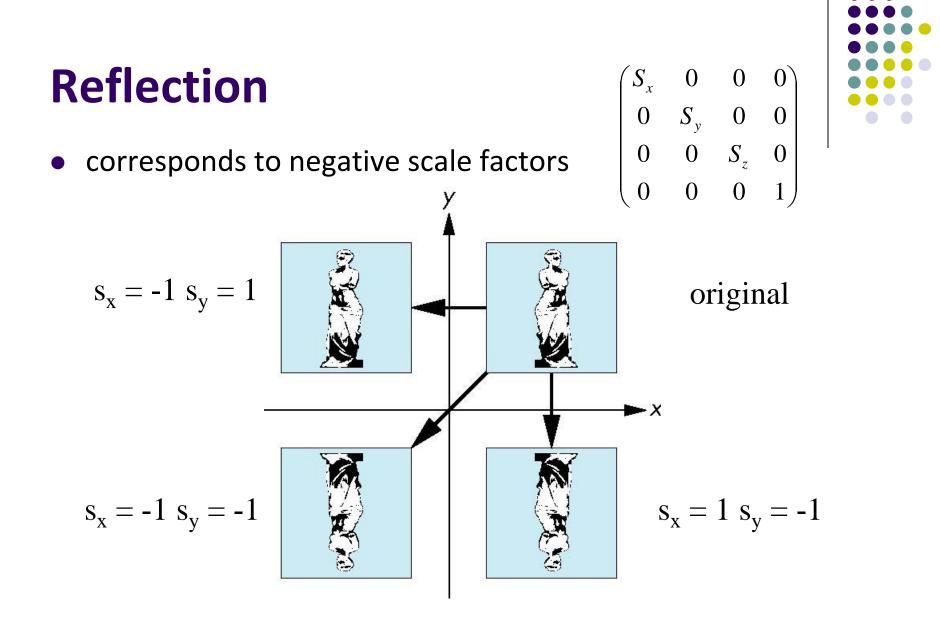
- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

h is fraction of y to be added to x

3D Shear





References

- Angel and Shreiner, Chapter 3
- Hill and Kelley, Chapter 5

