
Computer Graphics (CS 543)
Lecture 3a: Fractals

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

What are Fractals?

 Mathematical expressions to generate pretty pictures

 Evaluate math functions to create drawings
 approach infinity -> converge to image

 Utilizes recursion on computers

 Popularized by Benoit Mandelbrot (Yale university)

 Dimensional:

 Line is 1-dimensional

 Plane is 2-dimensional

Fractals: Self-similarity

 Fractals are defined in terms of self-similarity

 See similar sub-images within image as we zoom in

 Example: surface roughness or profile same as we zoom in

Applications of Fractals

 Other applications:
 Mountains

 Branches of a tree

 Surface of a sponge

 Cracks in the pavement

 Designing antennae (www.fractenna.com)

Clouds

FireCoastlineGrass

Example: Mandelbrot Set

Example: Fractal Terrain

Courtesy: Mountain 3D

Fractal Terrain software

Application: Fractal Art

Courtesy: Internet

Fractal Art Contest

Recall: Sierpinski Gasket Program

 Popular fractal

Koch Curves

 Discovered in 1904 by Helge von Koch

 Start with straight line of length 1

 Recursively:

 Divide line into 3 equal parts

 Replace middle section with triangular bump, sides of length 1/3

 New length = 4/3

Koch Snowflakes

S3, S4, S5,

Can form Koch snowflake by joining three Koch curves

Koch Snowflakes

Pseudocode, to draw Kn:

If (n equals 0) draw straight line

Else{

Draw Kn-1

Turn left 60°

Draw Kn-1

Turn right 120°

Draw Kn-1

Turn left 60°

Draw Kn-1
}

L-Systems: Lindenmayer Systems

 Express complex curves as simple set of string-production rules

 Example rules:

 ‘F’: go forward a distance 1 in current direction

 ‘+’: turn right through angle A degrees

 ‘-’: turn left through angle A degrees

 Using these rules, can express koch curve as: “F-F++F-F”

 Angle A = 60 degrees

L-Systems: Koch Curves

 Rule for Koch curves is F -> F-F++F-F

 Means each iteration replaces every ‘F’ occurrence with “F-F++F-F”

 So, if initial string (called the atom) is ‘F’, then

 S1 =“F-F++F-F”

 S2 =“F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”

 S3 = …..

 Gets very large quickly

Hilbert Curve

 Discovered by German Scientist, David Hilbert in late 1900s

 Space filling curve

 Drawn by connecting centers of 4 sub-squares, make up larger
square.

 Iteration 0: 3 segments connect 4 centers in upside-down U

Iteration 0

Hilbert Curve: Iteration 1

 Each of 4 squares divided into 4 more squares

 U shape shrunk to half its original size, copied into 4 sectors

 In top left, simply copied, top right: it's flipped vertically

 In the bottom left, rotated 90 degrees clockwise,

 Bottom right, rotated 90 degrees counter-clockwise.

 4 pieces connected with 3 segments, each of which is same
size as the shrunken pieces of the U shape (in red)

Hilbert Curve: Iteration 2

 Each of the 16 squares from iteration 1 divided into 4 squares

 Shape from iteration 1 shrunk and copied.

 3 connecting segments (shown in red) are added to complete
the curve.

 Implementation? Recursion is your friend!!

Gingerbread Man

 Each new point q is formed from previous point p using the
equation

 For 640 x 480 display area, use constants

M = 40 L = 3

 A good starting point p is (115, 121)

The Fern

(0,0)

Function f1 (previous point)

Function f2 (previous point)

Function f3 (previous point)

Function f4 (previous point)

.01

.07

.07

.85

Start at initial

point (0,0). Draw

dot at (0,0)

Use either f1, f2, f3 or f4 with

probabilities .01, .07,.07,.85

to generate next point

{Ref: Peitgen: Science of Fractals, p.221 ff} {Barnsley & Sloan,

"A Better way to Compress Images" BYTE, Jan 1988, p.215}

The Fern
Each new point (new.x,new.y) is formed from the prior point (old.x,old.y)
using the rule:

new.x := a[index] * old.x + c[index] * old.y + tx[index];

new.y := b[index] * old.x + d[index] * old.y + ty[index];

a[1]:= 0.0; b[1] := 0.0; c[1] := 0.0; d[1] := 0.16;

tx[1] := 0.0; ty[1] := 0.0; (i.e values for function f1)

a[2]:= 0.2; b[2] := 0.23; c[2] :=-0.26; d[2] := 0.22;

tx[2] := 0.0; ty[2] := 1.6; (values for function f2)

a[3]:= -0.15; b[3] := 0.26; c[3] := 0.28; d[3] := 0.24;

tx[3] := 0.0; ty[3] := 0.44; (values for function f3)

a[4]:= 0.85; b[4] := -0.04; c[4] := 0.04; d[4] := 0.85;

tx[4] := 0.0; ty[4] := 1.6; (values for function f4)

(0,0)

Function f1

Function f2

Function f3

Function f4

.01

.07

.07

.85

Mandelbrot Set

 Based on iteration theory

 Function of interest:

 Sequence of values (or orbit):

cszf  2)()(

ccccsd

cccsd

ccsd

csd









2222

4

222

3

22

2

2

1

))))((((

)))(((

))((

)(

Mandelbrot Set

 Orbit depends on s and c

 Basic question,:

 For given s and c,

 does function stay finite? (within Mandelbrot set)

 explode to infinity? (outside Mandelbrot set)

 Definition: if |d| < 1, orbit is finite else inifinite

 Examples orbits:

 s = 0, c = -1, orbit = 0,-1,0,-1,0,-1,0,-1,…..finite

 s = 0, c = 1, orbit = 0,1,2,5,26,677…… explodes

Mandelbrot Set

 Mandelbrot set: use complex numbers for c and s

 Always set s = 0

 Choose c as a complex number

 For example:

 s = 0, c = 0.2 + 0.5i

 Hence, orbit:

 0, c, c2+ c, (c2+ c)2 + c, ………

 Definition: Mandelbrot set includes all finite orbit c

Mandelbrot Set

 Some complex number math:

 Example:

 Modulus of a complex number, z = ai + b:

 Squaring a complex number:

1* ii

63*2 ii

22 baz 

ixyyxyix)2()()(222 

Im

Re

Argand

diagram

Mandelbrot Set

 Examples: Calculate first 3 terms

 with s=2, c=-1, terms are

 with s = 0, c = -2+i

6318

813

312

2

2

2







  iii

iii

ii

510)2(31

31)2()2(

2)2(0

2

2







ixyyxyix)2()()(222 

Mandelbrot Set

 Fixed points: Some complex numbers converge
to certain values after x iterations.

 Example:

 s = 0, c = -0.2 + 0.5i converges to –0.249227 +
0.333677i after 80 iterations

 Experiment: square –0.249227 + 0.333677i and add

-0.2 + 0.5i

 Mandelbrot set depends on the fact the
convergence of certain complex numbers

Mandelbrot Set Routine

 Math theory says calculate terms to infinity

 On computer, cannot iterate forever: our program will hang!

 Instead iterate 100 times

 Math theorem:

 if no term has exceeded 2 after 100 iterations, never will!

 Routine returns:

 100, if modulus doesn’t exceed 2 after 100 iterations

 Number of times iterated before modulus exceeds 2, or

Mandelbrot

function
s, c

Number = 100 (did not explode)

Number < 100

(first term > 2)

Mandelbrot dwell() function

int dwell(double cx, double cy)

{ // return true dwell or Num, whichever is smaller

#define Num 100 // increase this for better pics

double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;

for(int count = 0;count <= Num && fsq <= 4; count++)

{

tmp = dx; // save old real part

dx = dx*dx – dy*dy + cx; // new real part

dy = 2.0 * tmp * dy + cy; // new imag. Part

fsq = dx*dx + dy*dy;

}

return count; // number of iterations used

}

icxycyxiccyix

ixyyxyix

YXYX)2(])[()()(

)2()()(

222

222





])[(22

Xcyx 

icxy Y)2(

Mandelbrot Set
 Map real part to x-axis

 Map imaginary part to y-axis

 Decide range of complex numbers to investigate. E.g:

 X in range [-2.25: 0.75], Y in range [-1.5: 1.5]

(-1.5, 1)E.g. -1.5 + i

Range of complex

Numbers (c)
X in range [-2.25: 0.75],

Y in range [-1.5: 1.5]

Call ortho2D

to set range of

values to explore

Mandelbrot Set

 Set world window (ortho2D) (range of complex numbers to investigate)

 X in range [-2.25: 0.75], Y in range [-1.5: 1.5]

 Set viewport (glviewport). E.g:

 Viewport = [V.L, V.R, W, H]= [60,80,380,240]

glViewportortho2D

Mandelbrot Set

 So, for each pixel:

 For each point (c) in world window call your dwell() function

 Assign color <Red,Green,Blue> based on dwell() return value

 Choice of color determines how pretty

 Color assignment:

 Basic: In set (i.e. dwell() = 100), color = black, else color = white

 Discrete: Ranges of return values map to same color

 E.g 0 – 20 iterations = color 1

 20 – 40 iterations = color 2, etc.

 Continuous: Use a function

Mandelbrot

function
s, c

Number = 100 (did not explode)

Number < 100

(first term > 2)

Free Fractal Generating Software

 Fractint

 FracZoom

 3DFrac

References

 Angel and Shreiner, Interactive Computer Graphics, 6th

edition, Chapter 9

 Hill and Kelley, Computer Graphics using OpenGL, 3rd edition,
Appendix 4

