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Raytracing
 Global illumination-based rendering method

 Simulates rays of light, natural lighting effects

 Because light path is traced, handles effects tough for 
openGL:
 Shadows

 Multiple inter-reflections

 Transparency

 Refraction

 Texture mapping

 Newer variations… e.g. photon mapping (caustics, 
participating media, smoke)

 Note: raytracing can be semester graduate course

 Today: start with high-level description



Raytracing Uses
 Entertainment (movies, commercials)

 Games (pre-production)

 Simulation (e.g. military)

 Image: Internet Ray Tracing Contest Winner (April 2003)



Ray Casting (Appel, 1968)

direct illumination (One bounce)

OpenGL does this too



Ray Tracing Vs OpenGL

 OpenGL is object 
space rendering
 start from world 

objects, transform, 
project, rasterize them

 Ray tracing is image 
space method
 Start from pixel, what 

do you see through this 
pixel?

Ray tracing

OpenGL



How Raytracing Works

 Looks through each pixel (e.g. 640 x 480)

 Determines what eye sees through pixel

 Basic idea:

 Trace light rays: eye -> pixel (image plane) -> scene

 Does ray intersect any scene object in this direction?
 Yes? Render pixel using object color

 No? Renders the pixel using the background color

 Automatically solves hidden surface removal problem



Case A: Ray misses all objects

Render pixel using

Background color



Case B: Ray hits an object

Render pixel using

Object’s color



Case B: Ray hits an object

 Ray hits object: Check if hit point is in shadow, build 
secondary ray (shadow ray) towards each light source



Case B: Ray hits an object

If shadow ray hits another object before light source: first intersection 
point is in shadow of the second object (use only ambient)  

Otherwise, not in shadow. (use ambient + diffuse + specular)

Recall: P in shadow of  B



Case B: Ray hits an object

First Intersection point in the shadow of the second 

object is the shadow area.



Reflected Ray

When a ray hits an object, a reflected ray is generated which 
is tested against all of the objects in the scene.
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Recall: Reflected Ray r, 

in mirror direction



Reflection: Contribution from 

the reflected ray

Ambient + Diffuse + Specular

+ Reflected



Transparency

If intersected object is transparent,  transmitted ray is generated and 

tested against all the objects in the scene.
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Recall: Transmitted Ray t,

Using Snell’s law



Transparency: Contribution from 

transmitted ray

Ambient + Diffuse + Specular

+ Reflected + Transmitted



Reflected rays can generate other reflected rays that can generate 

other reflected rays, etc. Case A: Scene with no reflection rays

Reflected Ray: Recursion



Case B: Scene with one layer of reflection

Reflected Ray: Recursion



Case C: Scene with two layers of reflection

Reflected Ray: Recursion



Ray Tree

 Reflective and/or transmitted rays are continually generated 
until ray leaves the scene without hitting any object or a preset 
recursion level has been reached.



Find Object Intersections with rc-th ray

 Much of ray tracing work is in 
finding ray-object intersections

 Break into two parts
 Find intersection with untransformed, 

generic (dimension 1) shape first

 Later:  deal with transformed objects 

 Express ray, objects (sphere, cube, 
etc) mathematically

 Ray tracing idea: 
 put ray mathematical equation into 

object equation

 determine if valid intersection occurs

 Object with smallest hit time is object 
seen through pixel



Find Sphere Intersections with rc-th ray

 Ray generic object intersection best found by using implicit 
form of each shape. E.g. generic sphere is

 Approach: ray r(t) hits a surface when its  implicit eqn = 0

 So for ray with starting point S (eye) and direction c
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Ray Intersection with Generic Sphere

 Generic sphere  has form

 Substituting S + ct in F(P) = 0, we get 

 This is a quadratic equation of the form At2 + 2Bt + C = 0 
where A = |c|2 ,   B = S.c and  C = |S|2 - 1
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Ray Intersection with Generic Sphere

 Solving

 If discrimant (B2 – AC) is negative, no solutions, ray misses 
sphere

 If discriminant (B2 – AC) is zero, ray grazes sphere at one 
point and hit time is –B/A

 If discriminant (B2 – AC) is +ve, two hit times t1 and t2 (+ve
and –ve) discriminant
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Ray-Object Intersections

 Object equations and hence intersections vary, 
depend on parametric equations of object
 Ray-Sphere Intersections

 Ray-Plane Intersections

 Ray-Polygon Intersections

 Ray-Box Intersections

 Ray-Quadric Intersections

(cylinders, cones, ellipsoids, paraboloids )



Accelerating Ray Tracing

 Ray Tracing is time-consuming because of intersection 
calculations

 Each intersection requires from a few (5-7) to many (15-20) 
floating point (fp) operations

 Example: for a scene with 100 objects and computed with a 
screen resolution of 512 x 512, assuming 10 fp operations 
per object test there are about 250,000 X 100 X10 = 
250,000,000 fp operations. 

 Solutions:
 Use faster machines 

 Use specialized hardware, especially parallel processors or graphics card

 Speed up computations by using more efficient algorithms 

 Reduce the number of ray - object computations



Reducing Ray-Object Intersections

 Adaptive Depth Control: Stop generating 
reflected/transmitted rays when computed intensity becomes 
less than certain threshold.

 Bounding Volumes:
 Enclose groups of objects in sets of hierarchical bounding volumes

 First test for intersection with the bounding volume

 Then only if there is an intersection, against the objects enclosed by 
the volume.

 First Hit Speed-Up: use modified Z-buffer algorithm to 
determine the first hit. 



Popular Spatial Acceleration Structures

 Spatial Data Structures: manage scene geometry

 Bounding Volume Hierarchies

 BSP Trees

 Octrees

 Scene Graphs



How?

 Organizes geometry in some hierarchy

In 2D space Data structure

Bounding Volume Hierachy

Basic idea: Test bigger volumes first. 

If no hit, avoid testing smaller volumes inside it



What’s the point?
An example

 Assume we click on screen, and want to find which object 
we clicked on

click!

1) Test the root first

2) Descend recursively as needed

3) Terminate traversal as soon as possible

In general: get O(log n) instead of O(n)



Bounding Volume Hierarchy (BVH) 

 Use simple shapes to enclose complex geometry

 Most common bounding volumes (BVs):
 Spheres, boxes (AABB and OBB)

 The BV does not contibute to the rendered image  -
- rather, encloses an object

 The data structure is a k-ary tree

– Leaves hold geometry

– Internal nodes have at most                                             

k children

– Internal nodes hold BVs that                                   

enclose all geometry in its subtree



Example Application of BVH: 
Intersection Testing in RT

 Enclose scene geometry in BVH

 Cube/box much easier to test for intersections

 Large time savings if ray misses portions of scene



Axis-Aligned BSP tree
 General idea:

 Divide space with a plane

 Sort geometry into the space it belongs

 Can only make a splitting plane along x,y, or z

Minimal

box

Split along

plane

Split along

plane
Split along

plane



Axis-Aligned BSP tree

 Each internal node holds a divider plane

 Leaves hold geometry

 Differences compared to BVH
 Encloses entire space

 BVHs can use any desirable type of BV
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Octrees
 Similar to axis-aligned BSP trees but regular (split in middle)

 Variants: 
 Quadtree (2D) below and octree (3D)

 Quadtree



Example of Octrees

 In 3D each square (or rectangle) becomes a box, and 8 
children



Making Ray Tracing Look Real

 Antialiasing 
 Cast multiple rays from eye 

through same point in each pixel

 Motion blur
 Introduce time, motion

 Each ray intersects scene objects at different time

 Add camera shutter speed, reconstruction 

filter controls

 Depth of Field
 Simulate camera better

 f-stop

 focus

 Other effects (soft shadow, glossy, etc)



Real Time Ray Tracing
Ref: T. Purcell et al, Ray Tracing on Programmable Graphics Hardware, ACM Transactions on 
Graphics (TOG) 21 (3), pgs 703-712

 Multi-pass rendering: Ray tracer using 4 shaders



Nvidia Optix Real Time Ray Tracer

 Nvidia software/SDK, available on their website
 http://developer.nvidia.com/object/optix-home.html

 Needs high end Nvidia graphics card



Photon mapping examples

Images: courtesy of Stanford rendering contest

Caustics



Photon Mapping
 Simulates the transport of individual 

photons (Jensen ’95-’96)

 Good for effects ray tracing can’t, 
especially those requiring tracing from 
light source:

 Caustics

 Light through volumes (smoke, water, 
marble, clouds)

 Two pass algorithm

 Pass 1 - Photon tracing (generate photon 
map)

 Pass 2 – Rendering scene using photon 
map

Illustration is based on figures from Jensen[1].

Volumes, 

participating media

Caustics

Scattering

Indirect 

diffuse 



Photon Tracing
Photon scattering
 Emitted photons are probabilistically FROM LIGHT SOURCE, scattered 

through the scene and are eventually absorbed.

 Photon hits surface: can be reflected, refracted, or absorbed

 Photon hits volume: can be scattered or absorbed

 Store photons at surface/volume in kd-tree (photon maps)

Illustration is based on figures from Jensen[1].



Photon mapping: Pass 2 - Rendering
 Use ray tracing to render scene using information in the photon 

maps to estimate:

 Indirect diffuse lighting

 Reflected radiance at surfaces 

 Scattered radiance from volumes and translucent materials

 Illumination in volumes, caustics

Estimate

illumination 

in photon map

Ray tracing



Photon Tracing
Pass 2 - Rendering
 Imagine ray tracing a hitpoint x

 Information from photon maps used to estimate radiance from x

 Radius of circle required to encountering N photons gives radiance 
estimate at x

x



Real Time Photon mapping
Ref: T. Purcell et al, Photon mapping on programmable graphics hardware, Graphics Hardware 2003

 Similar idea to real-time ray tracing.

 Photon mapping as multi-pass shading
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