
Computer Graphics (CS 543)
Lecture 13c

Ray Tracing Overview

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Raytracing
 Global illumination-based rendering method

 Simulates rays of light, natural lighting effects

 Because light path is traced, handles effects tough for
openGL:
 Shadows

 Multiple inter-reflections

 Transparency

 Refraction

 Texture mapping

 Newer variations… e.g. photon mapping (caustics,
participating media, smoke)

 Note: raytracing can be semester graduate course

 Today: start with high-level description

Raytracing Uses
 Entertainment (movies, commercials)

 Games (pre-production)

 Simulation (e.g. military)

 Image: Internet Ray Tracing Contest Winner (April 2003)

Ray Casting (Appel, 1968)

direct illumination (One bounce)

OpenGL does this too

Ray Tracing Vs OpenGL

 OpenGL is object
space rendering
 start from world

objects, transform,
project, rasterize them

 Ray tracing is image
space method
 Start from pixel, what

do you see through this
pixel?

Ray tracing

OpenGL

How Raytracing Works

 Looks through each pixel (e.g. 640 x 480)

 Determines what eye sees through pixel

 Basic idea:

 Trace light rays: eye -> pixel (image plane) -> scene

 Does ray intersect any scene object in this direction?
 Yes? Render pixel using object color

 No? Renders the pixel using the background color

 Automatically solves hidden surface removal problem

Case A: Ray misses all objects

Render pixel using

Background color

Case B: Ray hits an object

Render pixel using

Object’s color

Case B: Ray hits an object

 Ray hits object: Check if hit point is in shadow, build
secondary ray (shadow ray) towards each light source

Case B: Ray hits an object

If shadow ray hits another object before light source: first intersection
point is in shadow of the second object (use only ambient)

Otherwise, not in shadow. (use ambient + diffuse + specular)

Recall: P in shadow of B

Case B: Ray hits an object

First Intersection point in the shadow of the second

object is the shadow area.

Reflected Ray

When a ray hits an object, a reflected ray is generated which
is tested against all of the objects in the scene.

Ph

v

r m

s

dir

t

IR

IT

I

Recall: Reflected Ray r,

in mirror direction

Reflection: Contribution from

the reflected ray

Ambient + Diffuse + Specular

+ Reflected

Transparency

If intersected object is transparent, transmitted ray is generated and

tested against all the objects in the scene.

Ph

m

t

faster

slower

2

1

Recall: Transmitted Ray t,

Using Snell’s law

Transparency: Contribution from

transmitted ray

Ambient + Diffuse + Specular

+ Reflected + Transmitted

Reflected rays can generate other reflected rays that can generate

other reflected rays, etc. Case A: Scene with no reflection rays

Reflected Ray: Recursion

Case B: Scene with one layer of reflection

Reflected Ray: Recursion

Case C: Scene with two layers of reflection

Reflected Ray: Recursion

Ray Tree

 Reflective and/or transmitted rays are continually generated
until ray leaves the scene without hitting any object or a preset
recursion level has been reached.

Find Object Intersections with rc-th ray

 Much of ray tracing work is in
finding ray-object intersections

 Break into two parts
 Find intersection with untransformed,

generic (dimension 1) shape first

 Later: deal with transformed objects

 Express ray, objects (sphere, cube,
etc) mathematically

 Ray tracing idea:
 put ray mathematical equation into

object equation

 determine if valid intersection occurs

 Object with smallest hit time is object
seen through pixel

Find Sphere Intersections with rc-th ray

 Ray generic object intersection best found by using implicit
form of each shape. E.g. generic sphere is

 Approach: ray r(t) hits a surface when its implicit eqn = 0

 So for ray with starting point S (eye) and direction c

1),,(222 zyxzyxF

0)(

)(

hittSF

tStr

c

c

Ray Intersection with Generic Sphere

 Generic sphere has form

 Substituting S + ct in F(P) = 0, we get

 This is a quadratic equation of the form At2 + 2Bt + C = 0
where A = |c|2 , B = S.c and C = |S|2 - 1

0)1|(|)(2||

01||

222

2

StSt

tS

cc

c

1||)(

1),,(

01

1

2

222

222

222

PPF

zyxzyxF

zyx

zyx

Ray Intersection with Generic Sphere

 Solving

 If discrimant (B2 – AC) is negative, no solutions, ray misses
sphere

 If discriminant (B2 – AC) is zero, ray grazes sphere at one
point and hit time is –B/A

 If discriminant (B2 – AC) is +ve, two hit times t1 and t2 (+ve
and –ve) discriminant

A

ACB

A

B
th

2

Ray-Object Intersections

 Object equations and hence intersections vary,
depend on parametric equations of object
 Ray-Sphere Intersections

 Ray-Plane Intersections

 Ray-Polygon Intersections

 Ray-Box Intersections

 Ray-Quadric Intersections

(cylinders, cones, ellipsoids, paraboloids)

Accelerating Ray Tracing

 Ray Tracing is time-consuming because of intersection
calculations

 Each intersection requires from a few (5-7) to many (15-20)
floating point (fp) operations

 Example: for a scene with 100 objects and computed with a
screen resolution of 512 x 512, assuming 10 fp operations
per object test there are about 250,000 X 100 X10 =
250,000,000 fp operations.

 Solutions:
 Use faster machines

 Use specialized hardware, especially parallel processors or graphics card

 Speed up computations by using more efficient algorithms

 Reduce the number of ray - object computations

Reducing Ray-Object Intersections

 Adaptive Depth Control: Stop generating
reflected/transmitted rays when computed intensity becomes
less than certain threshold.

 Bounding Volumes:
 Enclose groups of objects in sets of hierarchical bounding volumes

 First test for intersection with the bounding volume

 Then only if there is an intersection, against the objects enclosed by
the volume.

 First Hit Speed-Up: use modified Z-buffer algorithm to
determine the first hit.

Popular Spatial Acceleration Structures

 Spatial Data Structures: manage scene geometry

 Bounding Volume Hierarchies

 BSP Trees

 Octrees

 Scene Graphs

How?

 Organizes geometry in some hierarchy

In 2D space Data structure

Bounding Volume Hierachy

Basic idea: Test bigger volumes first.

If no hit, avoid testing smaller volumes inside it

What’s the point?
An example

 Assume we click on screen, and want to find which object
we clicked on

click!

1) Test the root first

2) Descend recursively as needed

3) Terminate traversal as soon as possible

In general: get O(log n) instead of O(n)

Bounding Volume Hierarchy (BVH)

 Use simple shapes to enclose complex geometry

 Most common bounding volumes (BVs):
 Spheres, boxes (AABB and OBB)

 The BV does not contibute to the rendered image -
- rather, encloses an object

 The data structure is a k-ary tree

– Leaves hold geometry

– Internal nodes have at most

k children

– Internal nodes hold BVs that

enclose all geometry in its subtree

Example Application of BVH:
Intersection Testing in RT

 Enclose scene geometry in BVH

 Cube/box much easier to test for intersections

 Large time savings if ray misses portions of scene

Axis-Aligned BSP tree
 General idea:

 Divide space with a plane

 Sort geometry into the space it belongs

 Can only make a splitting plane along x,y, or z

Minimal

box

Split along

plane

Split along

plane
Split along

plane

Axis-Aligned BSP tree

 Each internal node holds a divider plane

 Leaves hold geometry

 Differences compared to BVH
 Encloses entire space

 BVHs can use any desirable type of BV

A

B

C

D E

P
la

n
e
 0

Plane 1a Plane 1b

P
la

n
e
 2

0

1a

A B

1b

C 2

D E

Octrees
 Similar to axis-aligned BSP trees but regular (split in middle)

 Variants:
 Quadtree (2D) below and octree (3D)

 Quadtree

Example of Octrees

 In 3D each square (or rectangle) becomes a box, and 8
children

Making Ray Tracing Look Real

 Antialiasing
 Cast multiple rays from eye

through same point in each pixel

 Motion blur
 Introduce time, motion

 Each ray intersects scene objects at different time

 Add camera shutter speed, reconstruction

filter controls

 Depth of Field
 Simulate camera better

 f-stop

 focus

 Other effects (soft shadow, glossy, etc)

Real Time Ray Tracing
Ref: T. Purcell et al, Ray Tracing on Programmable Graphics Hardware, ACM Transactions on
Graphics (TOG) 21 (3), pgs 703-712

 Multi-pass rendering: Ray tracer using 4 shaders

Nvidia Optix Real Time Ray Tracer

 Nvidia software/SDK, available on their website
 http://developer.nvidia.com/object/optix-home.html

 Needs high end Nvidia graphics card

Photon mapping examples

Images: courtesy of Stanford rendering contest

Caustics

Photon Mapping
 Simulates the transport of individual

photons (Jensen ’95-’96)

 Good for effects ray tracing can’t,
especially those requiring tracing from
light source:

 Caustics

 Light through volumes (smoke, water,
marble, clouds)

 Two pass algorithm

 Pass 1 - Photon tracing (generate photon
map)

 Pass 2 – Rendering scene using photon
map

Illustration is based on figures from Jensen[1].

Volumes,

participating media

Caustics

Scattering

Indirect

diffuse

Photon Tracing
Photon scattering
 Emitted photons are probabilistically FROM LIGHT SOURCE, scattered

through the scene and are eventually absorbed.

 Photon hits surface: can be reflected, refracted, or absorbed

 Photon hits volume: can be scattered or absorbed

 Store photons at surface/volume in kd-tree (photon maps)

Illustration is based on figures from Jensen[1].

Photon mapping: Pass 2 - Rendering
 Use ray tracing to render scene using information in the photon

maps to estimate:

 Indirect diffuse lighting

 Reflected radiance at surfaces

 Scattered radiance from volumes and translucent materials

 Illumination in volumes, caustics

Estimate

illumination

in photon map

Ray tracing

Photon Tracing
Pass 2 - Rendering
 Imagine ray tracing a hitpoint x

 Information from photon maps used to estimate radiance from x

 Radius of circle required to encountering N photons gives radiance
estimate at x

x

Real Time Photon mapping
Ref: T. Purcell et al, Photon mapping on programmable graphics hardware, Graphics Hardware 2003

 Similar idea to real-time ray tracing.

 Photon mapping as multi-pass shading

References

 Hill and Kelley, Computer Graphics using OpenGL, 3rd edition,
Chapter 12

 Akenine-Moller, Eric Haines and Naty Hoffman, Real Time
Rendering (3rd edition)

