
Computer Graphics (CS 543)
Lecture 13c

Ray Tracing Overview

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Raytracing
 Global illumination-based rendering method

 Simulates rays of light, natural lighting effects

 Because light path is traced, handles effects tough for
openGL:
 Shadows

 Multiple inter-reflections

 Transparency

 Refraction

 Texture mapping

 Newer variations… e.g. photon mapping (caustics,
participating media, smoke)

 Note: raytracing can be semester graduate course

 Today: start with high-level description

Raytracing Uses
 Entertainment (movies, commercials)

 Games (pre-production)

 Simulation (e.g. military)

 Image: Internet Ray Tracing Contest Winner (April 2003)

Ray Casting (Appel, 1968)

direct illumination (One bounce)

OpenGL does this too

Ray Tracing Vs OpenGL

 OpenGL is object
space rendering
 start from world

objects, transform,
project, rasterize them

 Ray tracing is image
space method
 Start from pixel, what

do you see through this
pixel?

Ray tracing

OpenGL

How Raytracing Works

 Looks through each pixel (e.g. 640 x 480)

 Determines what eye sees through pixel

 Basic idea:

 Trace light rays: eye -> pixel (image plane) -> scene

 Does ray intersect any scene object in this direction?
 Yes? Render pixel using object color

 No? Renders the pixel using the background color

 Automatically solves hidden surface removal problem

Case A: Ray misses all objects

Render pixel using

Background color

Case B: Ray hits an object

Render pixel using

Object’s color

Case B: Ray hits an object

 Ray hits object: Check if hit point is in shadow, build
secondary ray (shadow ray) towards each light source

Case B: Ray hits an object

If shadow ray hits another object before light source: first intersection
point is in shadow of the second object (use only ambient)

Otherwise, not in shadow. (use ambient + diffuse + specular)

Recall: P in shadow of B

Case B: Ray hits an object

First Intersection point in the shadow of the second

object is the shadow area.

Reflected Ray

When a ray hits an object, a reflected ray is generated which
is tested against all of the objects in the scene.

Ph

v

r m

s

dir

t

IR

IT

I

Recall: Reflected Ray r,

in mirror direction

Reflection: Contribution from

the reflected ray

Ambient + Diffuse + Specular

+ Reflected

Transparency

If intersected object is transparent, transmitted ray is generated and

tested against all the objects in the scene.

Ph

m

t

faster

slower

2

1

Recall: Transmitted Ray t,

Using Snell’s law

Transparency: Contribution from

transmitted ray

Ambient + Diffuse + Specular

+ Reflected + Transmitted

Reflected rays can generate other reflected rays that can generate

other reflected rays, etc. Case A: Scene with no reflection rays

Reflected Ray: Recursion

Case B: Scene with one layer of reflection

Reflected Ray: Recursion

Case C: Scene with two layers of reflection

Reflected Ray: Recursion

Ray Tree

 Reflective and/or transmitted rays are continually generated
until ray leaves the scene without hitting any object or a preset
recursion level has been reached.

Find Object Intersections with rc-th ray

 Much of ray tracing work is in
finding ray-object intersections

 Break into two parts
 Find intersection with untransformed,

generic (dimension 1) shape first

 Later: deal with transformed objects

 Express ray, objects (sphere, cube,
etc) mathematically

 Ray tracing idea:
 put ray mathematical equation into

object equation

 determine if valid intersection occurs

 Object with smallest hit time is object
seen through pixel

Find Sphere Intersections with rc-th ray

 Ray generic object intersection best found by using implicit
form of each shape. E.g. generic sphere is

 Approach: ray r(t) hits a surface when its implicit eqn = 0

 So for ray with starting point S (eye) and direction c

1),,(222  zyxzyxF

0)(

)(





hittSF

tStr

c

c

Ray Intersection with Generic Sphere

 Generic sphere has form

 Substituting S + ct in F(P) = 0, we get

 This is a quadratic equation of the form At2 + 2Bt + C = 0
where A = |c|2 , B = S.c and C = |S|2 - 1

0)1|(|)(2||

01||

222

2





StSt

tS

cc

c

1||)(

1),,(

01

1

2

222

222

222









PPF

zyxzyxF

zyx

zyx

Ray Intersection with Generic Sphere

 Solving

 If discrimant (B2 – AC) is negative, no solutions, ray misses
sphere

 If discriminant (B2 – AC) is zero, ray grazes sphere at one
point and hit time is –B/A

 If discriminant (B2 – AC) is +ve, two hit times t1 and t2 (+ve
and –ve) discriminant

A

ACB

A

B
th




2

Ray-Object Intersections

 Object equations and hence intersections vary,
depend on parametric equations of object
 Ray-Sphere Intersections

 Ray-Plane Intersections

 Ray-Polygon Intersections

 Ray-Box Intersections

 Ray-Quadric Intersections

(cylinders, cones, ellipsoids, paraboloids)

Accelerating Ray Tracing

 Ray Tracing is time-consuming because of intersection
calculations

 Each intersection requires from a few (5-7) to many (15-20)
floating point (fp) operations

 Example: for a scene with 100 objects and computed with a
screen resolution of 512 x 512, assuming 10 fp operations
per object test there are about 250,000 X 100 X10 =
250,000,000 fp operations.

 Solutions:
 Use faster machines

 Use specialized hardware, especially parallel processors or graphics card

 Speed up computations by using more efficient algorithms

 Reduce the number of ray - object computations

Reducing Ray-Object Intersections

 Adaptive Depth Control: Stop generating
reflected/transmitted rays when computed intensity becomes
less than certain threshold.

 Bounding Volumes:
 Enclose groups of objects in sets of hierarchical bounding volumes

 First test for intersection with the bounding volume

 Then only if there is an intersection, against the objects enclosed by
the volume.

 First Hit Speed-Up: use modified Z-buffer algorithm to
determine the first hit.

Popular Spatial Acceleration Structures

 Spatial Data Structures: manage scene geometry

 Bounding Volume Hierarchies

 BSP Trees

 Octrees

 Scene Graphs

How?

 Organizes geometry in some hierarchy

In 2D space Data structure

Bounding Volume Hierachy

Basic idea: Test bigger volumes first.

If no hit, avoid testing smaller volumes inside it

What’s the point?
An example

 Assume we click on screen, and want to find which object
we clicked on

click!

1) Test the root first

2) Descend recursively as needed

3) Terminate traversal as soon as possible

In general: get O(log n) instead of O(n)

Bounding Volume Hierarchy (BVH)

 Use simple shapes to enclose complex geometry

 Most common bounding volumes (BVs):
 Spheres, boxes (AABB and OBB)

 The BV does not contibute to the rendered image -
- rather, encloses an object

 The data structure is a k-ary tree

– Leaves hold geometry

– Internal nodes have at most

k children

– Internal nodes hold BVs that

enclose all geometry in its subtree

Example Application of BVH:
Intersection Testing in RT

 Enclose scene geometry in BVH

 Cube/box much easier to test for intersections

 Large time savings if ray misses portions of scene

Axis-Aligned BSP tree
 General idea:

 Divide space with a plane

 Sort geometry into the space it belongs

 Can only make a splitting plane along x,y, or z

Minimal

box

Split along

plane

Split along

plane
Split along

plane

Axis-Aligned BSP tree

 Each internal node holds a divider plane

 Leaves hold geometry

 Differences compared to BVH
 Encloses entire space

 BVHs can use any desirable type of BV

A

B

C

D E

P
la

n
e
 0

Plane 1a Plane 1b

P
la

n
e
 2

0

1a

A B

1b

C 2

D E

Octrees
 Similar to axis-aligned BSP trees but regular (split in middle)

 Variants:
 Quadtree (2D) below and octree (3D)

 Quadtree

Example of Octrees

 In 3D each square (or rectangle) becomes a box, and 8
children

Making Ray Tracing Look Real

 Antialiasing
 Cast multiple rays from eye

through same point in each pixel

 Motion blur
 Introduce time, motion

 Each ray intersects scene objects at different time

 Add camera shutter speed, reconstruction

filter controls

 Depth of Field
 Simulate camera better

 f-stop

 focus

 Other effects (soft shadow, glossy, etc)

Real Time Ray Tracing
Ref: T. Purcell et al, Ray Tracing on Programmable Graphics Hardware, ACM Transactions on
Graphics (TOG) 21 (3), pgs 703-712

 Multi-pass rendering: Ray tracer using 4 shaders

Nvidia Optix Real Time Ray Tracer

 Nvidia software/SDK, available on their website
 http://developer.nvidia.com/object/optix-home.html

 Needs high end Nvidia graphics card

Photon mapping examples

Images: courtesy of Stanford rendering contest

Caustics

Photon Mapping
 Simulates the transport of individual

photons (Jensen ’95-’96)

 Good for effects ray tracing can’t,
especially those requiring tracing from
light source:

 Caustics

 Light through volumes (smoke, water,
marble, clouds)

 Two pass algorithm

 Pass 1 - Photon tracing (generate photon
map)

 Pass 2 – Rendering scene using photon
map

Illustration is based on figures from Jensen[1].

Volumes,

participating media

Caustics

Scattering

Indirect

diffuse

Photon Tracing
Photon scattering
 Emitted photons are probabilistically FROM LIGHT SOURCE, scattered

through the scene and are eventually absorbed.

 Photon hits surface: can be reflected, refracted, or absorbed

 Photon hits volume: can be scattered or absorbed

 Store photons at surface/volume in kd-tree (photon maps)

Illustration is based on figures from Jensen[1].

Photon mapping: Pass 2 - Rendering
 Use ray tracing to render scene using information in the photon

maps to estimate:

 Indirect diffuse lighting

 Reflected radiance at surfaces

 Scattered radiance from volumes and translucent materials

 Illumination in volumes, caustics

Estimate

illumination

in photon map

Ray tracing

Photon Tracing
Pass 2 - Rendering
 Imagine ray tracing a hitpoint x

 Information from photon maps used to estimate radiance from x

 Radius of circle required to encountering N photons gives radiance
estimate at x

x

Real Time Photon mapping
Ref: T. Purcell et al, Photon mapping on programmable graphics hardware, Graphics Hardware 2003

 Similar idea to real-time ray tracing.

 Photon mapping as multi-pass shading

References

 Hill and Kelley, Computer Graphics using OpenGL, 3rd edition,
Chapter 12

 Akenine-Moller, Eric Haines and Naty Hoffman, Real Time
Rendering (3rd edition)

