Computer Graphics

CS 543 Lecture 13b

Curves, Tesselation/Geometry Shaders
& Level of Detail

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

So Far...

Ref: Hill and Kelley, Computer Graphics Using OpenGL (3™ edition), Chapter 10

e Dealt with straight lines and flat surfaces
e But real world objects include curves, curved surfaces
e Need to develop:

e Representations of curves (curved surfaces)
e Tools to render curves (curved surfaces)

Curved Surface

Curve

Curve Representation: Explicit

e One variable expressed in terms of another
e Example:

z=1(xy)

e Works if one x-value for each y value (unique pair)
e Example: does not work for a sphere (many x,y combinations = z)

z:\/x2+y2

e Rarely used in CG because of this limitation

Curve Representation: Implicit

e Represent 2D curve or 3D surface as zeros of a formula
e Example: sphere representation

X°+y*+2°-1=0

e May limit classes of functions used

e Polynomial: function, linear combination of integer powers of
X, Y,z

e Degree of algebraic function: highest power in function

e Example: mx* has degree of 4

Curve Representation: Parametric

e Represent 2D curve as 2 functions, 1 parameter

(X(u), y(u))
e 3D surface as 3 functions, 2 parameters

(x(u,v), y(u,v), z(u,v))

e Example: parametric sphere
X(6,¢9) =cos¢cosd
y(6,9) =cos¢sing
2(6,¢) =sing

Choosing Representations

e Different representation suitable for different
applications
e Implicit representations good for:
Computing ray intersection with surface
Determing if point is inside/outside a surface
e Parametric representation good for:
Dividing surface into small polygonal elements for rendering

Subdivide into smaller patches

e Sometimes possible to convert one representation
into another

Continuity

e Consider parametric curve

P(u) = (x(u), y(u), z(u))’

e We would like smoothest curves possible

e Mathematically express smoothness as continuity (no
jumps)

e Defn: if kth derivatives exist, and are continuous,
curve has kth order parametric continuity denoted CX

Continuity

e 0O order means curve is continuous
e 1storder means curve tangent vectors (15t derivative) vary
slope curvature —

continuously, etc
discog\tinuity diSCOHlillL} ity discontinuity
™ i E
V’“\\ i \\
N % ' S *

Not continuous CY continuous C! continuous C2 continuous

Interactive Curve Design

e Mathematical formula unsuitable for designers

e Prefer to interactively give sequence of points
(control points)

e Write procedure:
e Input: sequence of points
e Output: parametric representation of curve

Interactive Curve Design

1 approach: curves pass through control points (interpolate)
Example: Lagrangian Interpolating Polynomial
Difficulty with this approach:

e Polynomials always have “wiggles”
e For straight lines wiggling is a problem

Our approach: approximate control points (Bezier, B-Splines)
called De Casteljau’s algorithm

| WS S

Interpolation Approximation

De Casteljau Algorithm

e Consider smooth curve that approximates sequence
of control points [p0,p1,....]

Designer specifies — / P!
Py, and P,

\ plu) — Algorithm calculates P(u)

Po

p(u) =@-u)p, +up, O<u<l

e Blending functions: u and (1 — u) are non-negative
and sum to one

De Casteljau Algorithm

e Now consider 3 control points
e 2 line segments, PO to P1 and P1 to P2

P

Po P>

e Algorithm first calculates Py, and P,

p01(u) — (1_ U) Py +UP pll(u) — (1_ U) P, +UP,

De Casteljau Algorithm

Then calculates P(u) by

Substituting known values of Py, (U) and Pu(U)
p(u) — (1_ U) Po1 T Up11(u)
=1~ u)2 Py 1+ (2u(l— u) u* P, Poi{W)

Po P2

p(u) ™,

by, (U) b,,(u) b,,(u)

Blending functions for degree 2 Bezier curve
Do, (U) =(@-U)* b, (u) =2u(l—u) b, (u) =u”

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

e Similarly, extend to 4 control points PO, P1, P2, P3

p(u) = (1-u)

/

o ()

Pl l(ll'l

Po

Po

+ (Bu(l—-u)?

T

b13(u)

P3

) b,

+ (3u2(1—u)E

b,;(u)

e Final result above is Bezier curve of degree 3

+u’

b,,(U)

De Casteljau Algorithm

p(u) = (1-u)

/

o ()

Po

+ (Bu(l—u)?

T

b13(u)

) b,

+ (3u2(1—u)E

b,;(u)

+u’

b,,(U)

e Blending functions are polynomial functions called
Bernstein’s polynomials

0,5(U) = u’

0p3(U) = (1-u)’
0,5(U) =3u(l-u)*
0,3(U) = 3u”(1—u)

De Casteljau Algorithm

p(u) = (1-u)

/

1

) D,

+(3u®(1-u)

|

3

P,

e Coefficients of blending functions gives Pascal’s triangle

po T (3U (1_ U)2
3
1
1 1
2
3 3
6

N

-t
N

3 control points

4 control points

1 <— 5 control points

De Casteljau Algorithm

e In general, blending function for k Bezier curve has form

oo

e Example

p(u) = (L-u)’p, +(Bul-u)’

/ |

by5(U) b5 (u)

) D,

+ (3u2(1—u)E

b,;(u)

+u’

by, (U)

e Blending function by, can be represented using (i =0, k = 3)

Doy (U) = U(l 0)*°u° = (L-u)?

Subdividing Bezier Curves

e OpenGL renders line segments, flat polygons

e To render curves, approximate with small linear
segments

e Subdivide surface to polygonal patches

e Bezier curves useful for elegant, recursive
subdivision

Subdividing Bezier Curves

e Let (PO... P3) denote original sequence of control points
e Recursively interpolate with u =7 as below

e Sequences (P00,P01,P02,P03) and (P0O3,P12,P21,30) define
Bezier curves also

e Bezier Curves can either be straightened or curved recursively
in this way

I’«:) p3

Bezier Surfaces

e Bezier surfaces: interpolate in two dimensions
e This called Bilinear interpolation

e Example: 4 control points, POO, PO1, P10, P11, 2 parameters u
and v

e Interpolate between
e POO and P01 using u
e P10and P11 usingu
e POO and P10 usingv
e PO1andP11usingv

p(u,Vv) = @=V)((1-U) Poo +UPgy) +V((L—U) Py +Up;,)

Bezier Surfaces

e Expressing in terms of blending functions

p(u, V) = by, (V)by, (U) Pgg + By, (V)b 05, (U) Po, +10y, (W), (U) Py

Generalizing

p(u,v) = ZZbi,s(V)bj,3(u) Pi ;

i=0 j=0

Problems with Bezier Curves

Bezier curves are elegant but too many control points
To achieve smoother curve

e =more control points bos(u) bys(u)
e = higher order polynomial bis(n) bys(u)

e = more calculations

0 u 1

Global support problem: All blending functions are non-zero
for all values of u

All control points contribute to all parts of the curve

Means after modelling complex surface (e.g. a ship), if one
control point is moved, must recalculate everything!

B-Splines

e B-splines designed to address Bezier shortcomings

e B-Spline given by blending control points

) =Y B WP

e Local support: Each spline contributes in limited range of u

e Only non-zero splines contribute in a given range of u

AN — By(u)

JL B(u) : : : :
/\ Bs(u) E ; ; E

— 7/ N_Bj ll‘k ”Ik 1 Ulk-z Ulk-f-.;

B-spline blending functions, order 2

Non-Uniform Rational B-Splines (NURBS)

e Encompasses both Bezier curves/surfaces and B-splines
e A rational function is ratio of two polynomials

e Some curves can be expressed as rational functions but not as
simple polynomials
e E.g. No known exact polynomial for circle

e Rational form of unit circle on xy-plane:

1-u?

x(u) =
(u) 1+u?
2U
y(U) =——

NURBS

e We can apply homogeneous coordinates to bring in w

x(u) =1-u?
y(u) =2u
z(u)=0
w(u) =1+u’

e Useful property of NURBS: preserved under transformation
E.g. Rotate sphere defined as NURBS, after rotation still a sphere

Tesselation

tesselation

Near = More detailed
mesh

Far = Less detailed
mesh

nd Schrader,2000]

[Zorin 2

Simplification

e Previously: Had to pre-generate mesh versions offline
e Tesselation shader unit new to GPU in DirectX 10 (2007)

e Subdivide faces to yield finer detail, generate new vertices, primitives

e Mesh simplification/tesselation on GPU = Real time LoD

e Tesselation:

http://www.youtube.com/watch?v=-eTngR6M37Q&feature=related

Tessellation Shaders

Operates on/sub-divides primitives (Lines, triangles, quad
Can subdivide curves, surfaces on the GPU

Lines

Triangles

)

Where Does Tesselation Shader Fit?

Vertex Shader

b

Primitive Assembly "

Optimized to sub-divide —

Tessellation Control Shader ||

primitives smoothly ~N

‘ Tessellation Primitive Generator |l_

| y

h

Primitive Assembly ||*

‘ Tessellation Evaluation Shaderl :

= Fixed Function

= Programmable

x
|| Geometry Shader ||
|

| Primitive Assembly ||

Rasterizer ||

y

|| Fragment Shader ||

000
0000
(X XN
[X X
o0
Geometry Shader :
Fixed number of vertices in/out
e After Tesselation shader \
e Used for algorithms that change | Vertox Shaser_|
no. of vertices p,immvelnssemmy]
e Modifies no. of vertices. Can - Tesseliation Gontrol shader |

e Handle whole primitives

Tessellation Primitive Generator || _____

e Generate new primitives

° Generate no primitives (CU”) :----*" Tessellation Evaluation Shaderl

Primitive Assembly ||* ---------- :

Can change number of vertices

3 - Geometry Shader “
I !

Primitive Assembly “

I
Rasterizer |

X
Fragment Shader |

Level of Detail (LoD) set

e Use simpler versions of objects if they make smaller
contributions to the image

e LOD algorithms have three parts:
e Generation: Models of different details are generated
e Selection: Chooses which model should be used depending on criteria

e Switching: Changing from one model to another

e Can be used for models, textures, shading and more

Level of Detail (LoD)

1.5 million triangles 1100 triangles

LOD 0 - 5218 tris

LOD 2 - 1804 tris

LOD 3 - 550 tris

Figure 14.21. On the left, the original model consists of 1.5 million triangles. On the

right, the model has 1100 triangles. with surface details stored as heightfield textures and

rendered using relief mapping. (Image courtesy of Naitalya Tatarchuk, ATI Research,
Inc.)

LOD Switching

e Discrete Geometry LODs

LOD is switched suddenly from one frame to the next

e Blend LODs
Two LODs are blended together over time (several frames)
Fade out LoD 1 by decreasing alpha value (1 to 0)
Fade in new LoD 2 by increasing alpha value (0 to 1)
More expensive than rendering one LOD

e Alpha LOD: Object’s alpha value decreased as distance
increases

LOD Selection °

e Determining which LOD to render and which to blend

e Range-Based (depending on object distance):

e LOD choice based on distance

LOD (53

{i | 1 | - node

' r, r,
Lopo ' LOD1 ° Lop2 ' LOD3
i -

= o il

e @ A @ @ A

Time-Critical LOD Rendering

e Using LOD to ensure constant frame rates
e Select LoD of scene that hardware can render at 25 FPS

e Predictive algorithm

e Selects the LOD based on which objects are visible

e Heuristics:
e Maximize) Benefit(O. L)
o

e Constraint: Z Cost{0), L) < TargetFrameTime.

References

e Hill and Kelley, chapter 11

e Angel and Shreiner, Interactive Computer Graphics, 6t"
edition, Chapter 10

e Shreiner, OpenGL Programming Guide, 8t" edition

