
Computer Graphics 
CS 543 Lecture 13b

Curves, Tesselation/Geometry Shaders 
& Level of Detail

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)



So Far…
Ref: Hill and Kelley, Computer Graphics Using OpenGL (3rd edition), Chapter 10

 Dealt with straight lines and flat surfaces

 But real world objects include curves, curved surfaces

 Need to develop:
 Representations of curves (curved surfaces)

 Tools to render curves (curved surfaces)

Curve
Curved Surface



Curve Representation: Explicit

 One variable expressed in terms of another

 Example:

 Works if one x-value for each y value (unique pair)

 Example: does not work for a sphere (many x,y combinations = z)

 Rarely used in CG because of this limitation
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Curve Representation: Implicit

 Represent 2D curve or 3D surface as zeros of a formula

 Example: sphere representation

 May limit classes of functions used

 Polynomial: function, linear combination of integer powers of 
x, y, z

 Degree of algebraic function: highest power in function

 Example: mx4 has degree of 4
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Curve Representation: Parametric

 Represent 2D curve as 2 functions, 1 parameter

 3D surface as 3 functions, 2 parameters

 Example: parametric sphere
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Choosing Representations

 Different representation suitable for different 
applications

 Implicit representations good for:

 Computing ray intersection with surface

 Determing if point is inside/outside a surface

 Parametric representation good for:

 Dividing surface into small polygonal elements for rendering

 Subdivide into smaller patches

 Sometimes possible to convert one representation 
into another



Continuity

 Consider parametric curve

 We would like smoothest curves possible

 Mathematically express smoothness as continuity (no 
jumps)

 Defn: if kth derivatives exist, and are continuous, 
curve has kth order parametric continuity denoted Ck
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Continuity

 0th order means curve is continuous

 1st order means curve tangent vectors (1st derivative) vary 
continuously, etc



Interactive Curve Design

 Mathematical formula unsuitable for designers

 Prefer to interactively give sequence of points 
(control points)

 Write procedure:

 Input: sequence of points

 Output: parametric representation of curve



Interactive Curve Design

 1 approach: curves pass through control points (interpolate)

 Example: Lagrangian Interpolating Polynomial

 Difficulty with this approach: 
 Polynomials always have “wiggles”

 For straight lines wiggling is a problem

 Our approach: approximate control points (Bezier, B-Splines)
called De Casteljau’s algorithm



De Casteljau Algorithm

 Consider smooth curve that approximates sequence 
of control points [p0,p1,….]

 Blending functions: u and (1 – u) are non-negative 
and sum to one
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Designer specifies

P0 and P1

Algorithm calculates P(u)



De Casteljau Algorithm

 Now consider 3 control points

 2 line segments, P0 to P1 and P1 to P2

 Algorithm first calculates P01 and P11
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De Casteljau Algorithm

)()1()( 1101 uuppuup 

2

2

10

2 ))1(2()1( pupuupu 

2

02 )1()( uub 

Blending functions for degree 2 Bezier curve
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Then calculates P(u) by 

Substituting known values of          and   )(01 up )(11 up

Note: blending functions, non-negative, sum to 1



De Casteljau Algorithm

 Similarly, extend to 4 control points P0, P1, P2, P3

 Final result above is Bezier curve of degree 3
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De Casteljau Algorithm

 Blending functions are polynomial functions called 
Bernstein’s polynomials
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De Casteljau Algorithm

 Coefficients of blending functions gives Pascal’s triangle
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De Casteljau Algorithm

 In general, blending function for k Bezier curve has form

 Example

 Blending function b03 can be represented using (i = 0, k = 3)
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Subdividing Bezier Curves

 OpenGL renders line segments, flat polygons 

 To render curves, approximate with small linear 
segments

 Subdivide surface to polygonal patches

 Bezier curves useful for elegant, recursive 
subdivision



Subdividing Bezier Curves

 Let (P0… P3) denote original sequence of control points

 Recursively interpolate with u = ½ as below 

 Sequences (P00,P01,P02,P03) and (P03,P12,P21,30) define 
Bezier curves also

 Bezier Curves can either be straightened or curved recursively 
in this way



Bezier Surfaces

 Bezier surfaces: interpolate in two dimensions

 This called Bilinear interpolation

 Example: 4 control points, P00, P01, P10, P11, 2 parameters u
and v

 Interpolate between 
 P00 and P01 using u

 P10 and P11 using u

 P00 and P10 using v

 P01 and P11 using v
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Bezier Surfaces

 Expressing in terms of blending functions
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Problems with Bezier Curves

 Bezier curves are elegant but too many control points

 To achieve smoother curve 
 = more control points 

 = higher order polynomial 

 = more calculations

 Global support problem: All blending functions are non-zero 
for all values of u

 All control points contribute to all parts of the curve

 Means after modelling complex surface (e.g. a ship), if one 
control point is moved, must recalculate everything!



B-Splines

 B-splines designed to address Bezier shortcomings

 B-Spline given by blending control points

 Local support: Each spline contributes in limited range of u

 Only non-zero splines contribute in a given range of u
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Non-Uniform Rational B-Splines (NURBS)

 Encompasses both Bezier curves/surfaces and B-splines

 A rational function is ratio of two polynomials

 Some curves can be expressed as rational functions but not as 
simple polynomials

 E.g. No known exact polynomial for circle

 Rational form of unit circle on xy-plane:
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NURBS

 We can apply homogeneous coordinates to bring in w

 Useful property of NURBS: preserved under transformation
 E.g. Rotate sphere defined as NURBS, after rotation still a sphere
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Tesselation

 Previously: Had to pre-generate mesh versions offline

 Tesselation shader unit new to GPU in DirectX 10 (2007)
 Subdivide faces to yield finer detail, generate new vertices, primitives

 Mesh simplification/tesselation on GPU = Real time LoD

 Tesselation: Demo

tesselation

Simplification

Far = Less detailed 
mesh 

Near = More detailed 
mesh 

http://www.youtube.com/watch?v=-eTngR6M37Q&feature=related


Tessellation Shaders

 Operates on/sub-divides primitives (Lines, triangles, quads)

 Can subdivide curves, surfaces on  the GPU



Where Does Tesselation Shader Fit?

Optimized to sub-divide 

primitives smoothly



Geometry Shader

 After Tesselation shader

 Used for algorithms that change

no. of vertices 

 Modifies no. of vertices. Can
 Handle whole primitives

 Generate new primitives

 Generate no primitives (cull)

Fixed number of vertices in/out

Can change number of vertices



Level of Detail (LoD)

 Use simpler versions of objects if they make smaller 
contributions to the image

 LOD algorithms have three parts:
 Generation: Models of different details are generated

 Selection: Chooses which model should be used depending on criteria

 Switching: Changing from one model to another

 Can be used for models, textures, shading and more



Level of Detail (LoD)

1.5 million triangles 1100 triangles



LOD Switching

 Discrete Geometry LODs
 LOD is switched suddenly from one frame to the next

 Blend LODs
 Two LODs are blended together over time (several frames)

 Fade out LoD 1 by decreasing alpha value (1 to 0)

 Fade in new LoD 2 by increasing alpha value (0 to 1)

 More expensive than rendering one LOD

 Alpha LOD: Object’s alpha value decreased as distance 
increases



LOD Selection

 Determining which LOD to render and which to blend

 Range-Based (depending on object distance):
 LOD choice based on distance 



Time-Critical LOD Rendering

 Using LOD to ensure constant frame rates

 Select LoD of scene that hardware can render at 25 FPS

 Predictive algorithm
 Selects the LOD based on which objects are visible

 Heuristics:
 Maximize                        

 Constraint:                    
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