
Computer Graphics
CS 543 Lecture 13b

Curves, Tesselation/Geometry Shaders
& Level of Detail

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

So Far…
Ref: Hill and Kelley, Computer Graphics Using OpenGL (3rd edition), Chapter 10

 Dealt with straight lines and flat surfaces

 But real world objects include curves, curved surfaces

 Need to develop:
 Representations of curves (curved surfaces)

 Tools to render curves (curved surfaces)

Curve
Curved Surface

Curve Representation: Explicit

 One variable expressed in terms of another

 Example:

 Works if one x-value for each y value (unique pair)

 Example: does not work for a sphere (many x,y combinations = z)

 Rarely used in CG because of this limitation

),(yxfz 

22 yxz 

Curve Representation: Implicit

 Represent 2D curve or 3D surface as zeros of a formula

 Example: sphere representation

 May limit classes of functions used

 Polynomial: function, linear combination of integer powers of
x, y, z

 Degree of algebraic function: highest power in function

 Example: mx4 has degree of 4

01222  zyx

Curve Representation: Parametric

 Represent 2D curve as 2 functions, 1 parameter

 3D surface as 3 functions, 2 parameters

 Example: parametric sphere

))(),((uyux

)),(),,(),,((vuzvuyvux







sin),(

sincos),(

coscos),(







z

y

x

Choosing Representations

 Different representation suitable for different
applications

 Implicit representations good for:

 Computing ray intersection with surface

 Determing if point is inside/outside a surface

 Parametric representation good for:

 Dividing surface into small polygonal elements for rendering

 Subdivide into smaller patches

 Sometimes possible to convert one representation
into another

Continuity

 Consider parametric curve

 We would like smoothest curves possible

 Mathematically express smoothness as continuity (no
jumps)

 Defn: if kth derivatives exist, and are continuous,
curve has kth order parametric continuity denoted Ck

TuzuyuxuP))(),(),(()(

Continuity

 0th order means curve is continuous

 1st order means curve tangent vectors (1st derivative) vary
continuously, etc

Interactive Curve Design

 Mathematical formula unsuitable for designers

 Prefer to interactively give sequence of points
(control points)

 Write procedure:

 Input: sequence of points

 Output: parametric representation of curve

Interactive Curve Design

 1 approach: curves pass through control points (interpolate)

 Example: Lagrangian Interpolating Polynomial

 Difficulty with this approach:
 Polynomials always have “wiggles”

 For straight lines wiggling is a problem

 Our approach: approximate control points (Bezier, B-Splines)
called De Casteljau’s algorithm

De Casteljau Algorithm

 Consider smooth curve that approximates sequence
of control points [p0,p1,….]

 Blending functions: u and (1 – u) are non-negative
and sum to one

10)1()(uppuup  10  u

Designer specifies

P0 and P1

Algorithm calculates P(u)

De Casteljau Algorithm

 Now consider 3 control points

 2 line segments, P0 to P1 and P1 to P2

 Algorithm first calculates P01 and P11

1001)1()(uppuup 
2111)1()(uppuup 

De Casteljau Algorithm

)()1()(1101 uuppuup 

2

2

10

2))1(2()1(pupuupu 

2

02)1()(uub 

Blending functions for degree 2 Bezier curve

)1(2)(12 uuub 
2

22)(uub 

)(02 ub)(12 ub)(22 ub

Then calculates P(u) by

Substituting known values of and)(01 up)(11 up

Note: blending functions, non-negative, sum to 1

De Casteljau Algorithm

 Similarly, extend to 4 control points P0, P1, P2, P3

 Final result above is Bezier curve of degree 3

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup 

)(23 ub)(03 ub)(13 ub)(33 ub

De Casteljau Algorithm

 Blending functions are polynomial functions called
Bernstein’s polynomials

3

33

2

23

2

13

3

03

)(

)1(3)(

)1(3)(

)1()(

uub

uuub

uuub

uub









3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup 

)(23 ub)(03 ub)(13 ub)(33 ub

De Casteljau Algorithm

 Coefficients of blending functions gives Pascal’s triangle

1

4

1

1

1

1

1

2

4

3

6

1 3

1

1

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup 

31 3 1

4 control points

3 control points

5 control points

De Casteljau Algorithm

 In general, blending function for k Bezier curve has form

 Example

 Blending function b03 can be represented using (i = 0, k = 3)

iik

ik uu
i

k
ub 








)1()(

3003

03)1()1(
0

3
)(uuuub 








 

3

2

2

1

2

0

3))1(3())1(3()1()(upuupuupuup 

)(23 ub)(03 ub)(13 ub)(33 ub

Subdividing Bezier Curves

 OpenGL renders line segments, flat polygons

 To render curves, approximate with small linear
segments

 Subdivide surface to polygonal patches

 Bezier curves useful for elegant, recursive
subdivision

Subdividing Bezier Curves

 Let (P0… P3) denote original sequence of control points

 Recursively interpolate with u = ½ as below

 Sequences (P00,P01,P02,P03) and (P03,P12,P21,30) define
Bezier curves also

 Bezier Curves can either be straightened or curved recursively
in this way

Bezier Surfaces

 Bezier surfaces: interpolate in two dimensions

 This called Bilinear interpolation

 Example: 4 control points, P00, P01, P10, P11, 2 parameters u
and v

 Interpolate between
 P00 and P01 using u

 P10 and P11 using u

 P00 and P10 using v

 P01 and P11 using v

))1(())1)((1(),(11100100 uppuvuppuvvup 

Bezier Surfaces

 Expressing in terms of blending functions

11111101011101000101)()()()()()(),(pubvbpubbvbpubvbvup 

Generalizing


 


3

0

3

0

,3,3,)()(),(
i j

jiji pubvbvup

Problems with Bezier Curves

 Bezier curves are elegant but too many control points

 To achieve smoother curve
 = more control points

 = higher order polynomial

 = more calculations

 Global support problem: All blending functions are non-zero
for all values of u

 All control points contribute to all parts of the curve

 Means after modelling complex surface (e.g. a ship), if one
control point is moved, must recalculate everything!

B-Splines

 B-splines designed to address Bezier shortcomings

 B-Spline given by blending control points

 Local support: Each spline contributes in limited range of u

 Only non-zero splines contribute in a given range of u





m

i

ii puBup
0

)()(

B-spline blending functions, order 2

Non-Uniform Rational B-Splines (NURBS)

 Encompasses both Bezier curves/surfaces and B-splines

 A rational function is ratio of two polynomials

 Some curves can be expressed as rational functions but not as
simple polynomials

 E.g. No known exact polynomial for circle

 Rational form of unit circle on xy-plane:

0)(

1

2
)(

1

1
)(

2

2

2











uz

u

u
uy

u

u
ux

NURBS

 We can apply homogeneous coordinates to bring in w

 Useful property of NURBS: preserved under transformation
 E.g. Rotate sphere defined as NURBS, after rotation still a sphere

2

2

1)(

0)(

2)(

1)(

uuw

uz

uuy

uux









Tesselation

 Previously: Had to pre-generate mesh versions offline

 Tesselation shader unit new to GPU in DirectX 10 (2007)
 Subdivide faces to yield finer detail, generate new vertices, primitives

 Mesh simplification/tesselation on GPU = Real time LoD

 Tesselation: Demo

tesselation

Simplification

Far = Less detailed
mesh

Near = More detailed
mesh

http://www.youtube.com/watch?v=-eTngR6M37Q&feature=related

Tessellation Shaders

 Operates on/sub-divides primitives (Lines, triangles, quads)

 Can subdivide curves, surfaces on the GPU

Where Does Tesselation Shader Fit?

Optimized to sub-divide

primitives smoothly

Geometry Shader

 After Tesselation shader

 Used for algorithms that change

no. of vertices

 Modifies no. of vertices. Can
 Handle whole primitives

 Generate new primitives

 Generate no primitives (cull)

Fixed number of vertices in/out

Can change number of vertices

Level of Detail (LoD)

 Use simpler versions of objects if they make smaller
contributions to the image

 LOD algorithms have three parts:
 Generation: Models of different details are generated

 Selection: Chooses which model should be used depending on criteria

 Switching: Changing from one model to another

 Can be used for models, textures, shading and more

Level of Detail (LoD)

1.5 million triangles 1100 triangles

LOD Switching

 Discrete Geometry LODs
 LOD is switched suddenly from one frame to the next

 Blend LODs
 Two LODs are blended together over time (several frames)

 Fade out LoD 1 by decreasing alpha value (1 to 0)

 Fade in new LoD 2 by increasing alpha value (0 to 1)

 More expensive than rendering one LOD

 Alpha LOD: Object’s alpha value decreased as distance
increases

LOD Selection

 Determining which LOD to render and which to blend

 Range-Based (depending on object distance):
 LOD choice based on distance

Time-Critical LOD Rendering

 Using LOD to ensure constant frame rates

 Select LoD of scene that hardware can render at 25 FPS

 Predictive algorithm
 Selects the LOD based on which objects are visible

 Heuristics:
 Maximize

 Constraint:

References

 Hill and Kelley, chapter 11

 Angel and Shreiner, Interactive Computer Graphics, 6th

edition, Chapter 10

 Shreiner, OpenGL Programming Guide, 8th edition

