Rasterization

- Rasterization generates set of **fragments**
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g. lines, circles, triangles, polygons)

Rasterization: Determine Pixels (fragments) each primitive covers
Line drawing algorithm

- Programmer specifies \((x,y)\) of end pixels
- Need algorithm to determine pixels on line path

Line: \((3,2) \rightarrow (9,6)\)

Which intermediate pixels to turn on?
Line drawing algorithm

- Pixel \((x,y)\) values constrained to integer values
- Computed intermediate values may be floats
- Rounding may be required. E.g. \((10.48, 20.51)\) rounded to \((10, 21)\)
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies
Line Drawing Algorithm

- Slope-intercept line equation
 - $y = mx + b$
 - Given 2 end points $(x_0, y_0), (x_1, y_1)$, how to compute m and b?

\[
m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad y_0 = m \cdot x_0 + b \Rightarrow b = y_0 - m \cdot x_0
\]
Line Drawing Algorithm

Numerical example of finding slope m:

- $(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)$

$$m = \frac{By - Ay}{Bx - Ax} = \frac{96 - 41}{125 - 23} = \frac{55}{102} = 0.5392$$
Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, m:

- **Case a:** \(m < 1 \) x incrementing faster
 - Step in x=1 increments, compute y (a fraction) and round
- **Case b:** \(m > 1 \) y incrementing faster
 - Step in y=1 increments, compute x (a fraction) and round

Step through line, starting at \((x_0, y_0)\)
DDA Line Drawing Algorithm (Case a: \(m < 1 \))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{1}
\]

\[\Rightarrow y_{k+1} = y_k + m\]

Example, if first end point is \((0,0)\)

Example, if \(m = 0.2 \)

Step 1: \(x = 1, y = 0.2 \) \(\Rightarrow \) shade \((1,0)\)

Step 2: \(x = 2, y = 0.4 \) \(\Rightarrow \) shade \((2,0)\)

Step 3: \(x = 3, y = 0.6 \) \(\Rightarrow \) shade \((3,1)\)

... etc

\(x = x_0 \quad y = y_0 \)

Illuminate pixel \((x, \text{round}(y))\)

\(x = x + 1 \quad y = y + m \)

Illuminate pixel \((x, \text{round}(y))\)

...\)

Until \(x == x_1 \)
DDA Line Drawing Algorithm (Case b: m > 1)

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{1}{x_{k+1} - x_k}
\]

\[
\Rightarrow x_{k+1} = x_k + \frac{1}{m}
\]

- \(x = x_0\)
- \(y = y_0\)

Illuminate pixel \((\text{round}(x), y)\)

- \(y = y + 1\)
- \(x = x + 1/m\)

Illuminate pixel \((\text{round}(x), y)\)

... etc

Example, if first end point is \((0,0)\)

if \(1/m = 0.2\)

- Step 1: \(y = 1, x = 0.2 \Rightarrow\) shade \((0,1)\)
- Step 2: \(y = 2, x = 0.4 \Rightarrow\) shade \((0,2)\)
- Step 3: \(y = 3, x = 0.6 \Rightarrow\) shade \((1,3)\)

... etc
compute m;
if $m < 1$:
{
 float $y = y_0$; // initial value
 for(int $x = x_0; x <= x_1; x++, $y += m$)
 setPixel(x, round(y));
}
else // $m > 1$
{
 float $x = x_0$; // initial value
 for(int $y = y_0; y <= y_1; y++, $x += 1/m$)
 setPixel(round(x), y);
}

- **Note:** setPixel(x, y) writes current color into pixel (x, y) in frame buffer
Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
 - Not very efficient
 - Round operation is expensive
- Optimized algorithms typically used.
 - Integer DDA
 - E.g. Bresenham algorithm
- Bresenham algorithm
 - Incremental algorithm: current value uses previous value
 - Integers only: avoid floating point arithmetic
 - Several versions of algorithm: we’ll describe midpoint version of algorithm
Bresenham’s Line-Drawing Algorithm

- **Problem:** Given endpoints \((Ax, Ay)\) and \((Bx, By)\) of line, determine intervening pixels

- First make two simplifying assumptions (remove later):
 - \((Ax < Bx)\)
 - \((0 < m < 1)\)

- Define
 - **Width** \(W = Bx - Ax\)
 - **Height** \(H = By - Ay\)
Bresenham’s Line-Drawing Algorithm

- Based on assumptions \((Ax < Bx)\) and \((0 < m < 1)\)
 - \(W, H\) are +ve
 - \(H < W\)
- Increment \(x\) by +1, \(y\) incr by +1 or stays same
- Midpoint algorithm determines which happens
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x + 1, y + \frac{1}{2}) \)

Build equation of actual line, compare to midpoint

Case a: If line is above midpoint (red dot)
Shade upper pixel, \((x + 1, y + 1)\)

Case b: If line is below midpoint (red dot)
Shade lower pixel, \((x + 1, y)\)
Build Equation of the Line

- Using similar triangles:
 \[
 \frac{y - Ay}{x - Ax} = \frac{H}{W}
 \]

 \[H(x - Ax) = W(y - Ay)\]

 \[-W(y - Ay) + H(x - Ax) = 0\]

- Above is equation of line from \((Ax, Ay)\) to \((Bx, By)\)
- Thus, any point \((x, y)\) that lies on ideal line makes eqn = 0
- Double expression (to avoid floats later), and call it \(F(x, y)\)

\[F(x, y) = -2W(y - Ay) + 2H(x - Ax)\]
Bresenham’s Line-Drawing Algorithm

- So, \(F(x,y) = -2W(y - Ay) + 2H(x - Ax) \)

- Algorithm, If:
 - \(F(x, y) < 0 \), \((x, y)\) above line
 - \(F(x, y) > 0 \), \((x, y)\) below line

- **Hint:** \(F(x, y) = 0 \) is on line
- Increase \(y \) keeping \(x \) constant, \(F(x, y) \) becomes more negative
Bresenham’s Line-Drawing Algorithm

- **Example:** to find line segment between (3, 7) and (9, 11)

 \[
 F(x, y) = -2W(y - Ay) + 2H(x - Ax) \\
 = (-12)(y - 7) + (8)(x - 3)
 \]

- For points on line. E.g. (7, 29/3), \(F(x, y) = 0 \)
- \(A = (4, 4) \) lies below line since \(F = 44 \)
- \(B = (5, 9) \) lies above line since \(F = -8 \)
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint M(Mx, My) = \((x_0 + 1, y_0 + \frac{1}{2}) \)

Case a: If M below actual line
F(Mx, My) > 0
shade upper pixel \((x + 1, y + 1) \)

Case b: If M above actual line
F(Mx, My) < 0
shade lower pixel \((x + 1, y) \)
Can compute $F(x,y)$ incrementally

Initially, midpoint $M = (Ax + 1, Ay + \frac{1}{2})$

$$F(M_x, M_y) = -2W(y - Ay) + 2H(x - Ax)$$

i.e. $F(Ax + 1, Ay + \frac{1}{2}) = 2H - W$

Can compute $F(x,y)$ for next midpoint incrementally

If we increment to $(x + 1, y)$, compute new $F(M_x, M_y)$

$$F(M_x, M_y) += 2H$$

i.e. $F(Ax + 2, Ay + \frac{1}{2})$

- $F(Ax + 1, Ay + \frac{1}{2})$

 $= 2H$
Can compute $F(x,y)$ incrementally

If we increment to $(x + 1, y + 1)$

$$F(Mx, My) = 2(H - W)$$

i.e. $F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + 1/2) = 2(H - W)$
Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x – a.x, H = b.y – a.y;
 int F = 2 * H – W; // current error term
 for(int x = a.x; x <= b.x; x++)
 {
 setpixel at (x, y); // to desired color value
 if F < 0 // y stays same
 F = F + 2H;
 else{
 Y++, F = F + 2(H – W) // increment y
 }
 }
}

● Recall: F is equation of line
Bresenham’s Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions
 $0 < m < 1$ and $Ax < Bx$

- Can add code to remove restrictions
 - When $Ax > Bx$ (swap and draw)
 - Lines having $m > 1$ (interchange x with y)
 - Lines with $m < 0$ (step $x++$, decrement y not incr)
 - Horizontal and vertical lines (pretest $a.x = b.x$ and skip tests)
References