Consider an edge going from A to C

- 2 end-points of edge: $A = (A_x, A_y, A_z, A_w)$ and $C = (C_x, C_y, C_z, C_w)$

A = (Ax,Ay,Az,Aw)

C = (Cx,Cy,Cz,Cw)
Liang-Barsky 3D Clipping

- **Goal**: Clip object edge-by-edge against Canonical View volume (CVV)

- **Problem**:
 - 2 end-points of edge: \(A = (Ax, Ay, Az, Aw) \) and \(C = (Cx, Cy, Cz, Cw) \)
 - If edge intersects with CVV, compute intersection point \(I = (Ix, ly, Iz, lw) \)
Problem: Determine if point \((x,y,z)\) is inside or outside CVV?

CVV == 6 infinite planes \((x=-1,1; \ y=-1,1; \ z=-1,1)\)

Point \((x,y,z)\) is inside CVV if
\[-1 \leq x \leq 1\]
\[-1 \leq y \leq 1\]
\[-1 \leq z \leq 1\]
else point is outside CVV
Determining if point is inside CVV

If point specified as \((x, y, z, w)\)
- Test \((x/w, y/w, z/w)\)!

Point \((x/w, y/w, z/w)\) is inside CVV

\[
\begin{align*}
\text{if} & \quad (-1 \leq x/w \leq 1) \\
\text{and} & \quad (-1 \leq y/w \leq 1) \\
\text{and} & \quad (-1 \leq z/w \leq 1)
\end{align*}
\]

else point is outside CVV
Modify Inside/Outside Tests Slightly

Our test: \((-1 < \frac{x}{w} < 1)\)

Point \((x,y,z,w)\) inside plane \(x = 1\) if

\[
\frac{x}{w} < 1 \Rightarrow w - x > 0
\]

Point \((x,y,z,w)\) inside plane \(x = -1\) if

\[
-1 < \frac{x}{w} \Rightarrow w + x > 0
\]
Numerical Example: Inside/Outside CVV Test

- **Point** \((x,y,z,w)\) is
 - inside plane \(x=-1\) if \(w+x > 0\)
 - inside plane \(x=1\) if \(w-x > 0\)

- Example Point \((0.5, 0.2, 0.7)\) inside planes \((x = -1, 1)\) because \(-1 \leq 0.5 \leq 1\)

- If \(w = 10\), \((0.5, 0.2, 0.7) = (5, 2, 7, 10)\)
- Can either **divide by** \(w\) then test: \(-1 \leq 5/10 \leq 1\) OR

 To test if inside \(x = -1\), \(w + x = 10 + 5 = 15 > 0\)

 To test if inside \(x = 1\), \(w - x = 10 - 5 = 5 > 0\)
3D Clipping

- Do same for y, z to form boundary coordinates for 6 planes as:

<table>
<thead>
<tr>
<th>Boundary coordinate (BC)</th>
<th>Homogenous coordinate</th>
<th>Clip plane</th>
<th>Example (5,2,7,10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC0</td>
<td>w+x</td>
<td>x=-1</td>
<td>15</td>
</tr>
<tr>
<td>BC1</td>
<td>w-x</td>
<td>x=1</td>
<td>5</td>
</tr>
<tr>
<td>BC2</td>
<td>w+y</td>
<td>y=-1</td>
<td>12</td>
</tr>
<tr>
<td>BC3</td>
<td>w-y</td>
<td>y=1</td>
<td>8</td>
</tr>
<tr>
<td>BC4</td>
<td>w+z</td>
<td>z=-1</td>
<td>17</td>
</tr>
<tr>
<td>BC5</td>
<td>w-z</td>
<td>z=1</td>
<td>3</td>
</tr>
</tbody>
</table>

- Consider line that goes from point A to C
 - **Trivial accept:** 12 BCs (6 for pt. A, 6 for pt. C) > 0
 - **Trivial reject:** Both endpoints A, C outside (-ve) for same plane
Edges as Parametric Equations

- Implicit form \(F(x, y) = 0 \)

- Parametric forms:
 - points specified based on single parameter value
 - Typical parameter: time \(t \)

\[
P(t) = P_0 + (P_1 - P_0) * t \quad 0 \leq t \leq 1
\]

- Some algorithms work in parametric form
 - Clipping: exclude line segment ranges
 - Animation: Interpolate between endpoints by varying \(t \)

- Represent each edge parametrically as \(A + (C - A)t \)
 - at time \(t=0 \), point at \(A \)
 - at time \(t=1 \), point at \(C \)
Inside/outside?

- Test A, C against 6 walls ($x=-1,1; \ y=-1,1; \ z=-1,1$)
- There is an intersection if BCs have opposite signs. i.e. if either
 - A is outside (<0), C is inside (>0) or
 - A inside (>0), C outside (<0)
- Edge intersects with plane at some t_{hit} between [0,1]

![Diagram of edge and plane intersection](image)
Calculating hit time (t_hit)

- How to calculate t_hit?
- Represent an edge t as:

\[\text{Edge}(t) = ((Ax + (Cx - Ax)t, (Ay + (Cy - Ay)t), (Az + (Cz - Az)t), (Aw + (Cw - Aw)t)) \]

- E.g. If \(x = 1 \),
 \[\frac{x}{w} = \frac{Ax + (Cx - Ax)t}{Aw + (Cw - Aw)t} = 1 \]

- Solving for \(t \) above,

\[t = \frac{Aw - Ax}{(Aw - Ax) - (Cw - Cx)} \]
Inside/outside?

- \(t_{\text{hit}} \) can be “entering \((t_{\text{in}})\)” or “leaving \((t_{\text{out}})\)”

- Define: “entering” if A outside, C inside
 - Why? As \(t \) goes \([0-1]\), edge goes from outside (at A) to inside (at C)

- Define “leaving” if A inside, C outside
 - Why? As \(t \) goes \([0-1]\), edge goes from inside (at A) to inside (at C)
Definition: Candidate Interval

- Candidate Interval (CI): time interval during which edge might still be inside CVV. i.e. CI = t_{in} to t_{out}
- Initialize CI to [0,1]
- For each of 6 planes, calculate t_{in} or t_{out}, shrink CI

Conversely: values of t outside CI = edge is outside CVV
Example: Chop step by step against 6 planes

- Initially
 \[t = 0, \quad t_{\text{out}} = 0 \]
 Candidate Interval (CI) = [0 to 1]

- Chop against each of 6 planes
 \[t_{\text{in}} = 0, \quad t_{\text{out}} = 0.74 \]
 Candidate Interval (CI) = [0 to 0.74]

Why \(t_{\text{out}} \)?
Chop step by step against 6 planes

- Initially
 - $t_{out} = 0.74$
 - $t_{in} = 0$, $t_{out} = 0.74$
 - Candidate Interval (CI) = [0 to 0.74]

- Then
 - Plane $x = -1$
 - $t_{out} = 0.74$
 - $t_{in} = 0.36$, $t_{out} = 0.74$
 - Candidate Interval (CI) CI = [0.36 to 0.74]

Why t_{in}?
Shortening Candidate Interval

Algorithm:

- Test for trivial accept/reject (stop if either occurs)
- Set CI to [0,1]
- For each of 6 planes:
 - Find hit time t_{hit}
 - If t_{in}, new $t_{\text{in}} = \max(t_{\text{in}}, t_{\text{hit}})$
 - If t_{out}, new $t_{\text{out}} = \min(t_{\text{out}}, t_{\text{hit}})$
 - If $t_{\text{in}} > t_{\text{out}}$ => exit (no valid intersections)

Note: seeking smallest valid CI without t_{in} crossing t_{out}
Calculate chopped A and C

- If valid t_{in}, t_{out}, calculate adjusted edge endpoints A, C as

- $A_{chop} = A + t_{in} \ (C - A)$ (calculate for Ax,Ay,Az)
- $C_{chop} = A + t_{out} \ (C - A)$ (calculate for Cx,Cy,Cz)
3D Clipping Implementation

- Function `clipEdge()`
- Input: two points A and C (in homogenous coordinates)
- Output:
 - 0, if AC lies *complete outside* CVV
 - 1, *complete inside* CVV
 - Returns clipped A and C otherwise

![Diagram of 3D Clipping Implementation](image)
Store BCs as Outcodes

- Calculate 6 BCs for A, 6 for C
- Use outcodes to track in/out
 - Number walls $x = +1, -1; y = +1, -1$, and $z = +1, -1$ as 0 to 5
 - Bit i of A’s outcode = 1 if A is outside ith wall
 - 1 otherwise
- Example: outcode if point outside walls 1, 2, 5
Trivial Accept/Reject using Outcodes

- **Trivial accept:** inside (not outside) all walls

- **Trivial reject:** point outside same wall. Example Both A and C outside wall 1

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>A Outcode</th>
<th>C OutCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical bitwise test: $A \mid C == 0$

<table>
<thead>
<tr>
<th>Wall no.</th>
<th>A Outcode</th>
<th>C OutCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical bitwise test: $A \& C \neq 0$
3D Clipping Implementation

- Compute BCs for A,C store as outcodes
- Test A, C outcodes for trivial accept, trivial reject
- If not trivial accept/reject, for each wall:
 - Compute tHit
 - Update t_in, t_out
 - If t_in > t_out, early exit
3D Clipping Pseudocode

```c
int clipEdge(Point4& A, Point4& C) {
    double tIn = 0.0, tOut = 1.0, tHit;
    double aBC[6], cBC[6];
    int aOutcode = 0, cOutcode = 0;

    .....find BCs for A and C
    .....form outcodes for A and C

    if((aOutCode & cOutcode) != 0) // trivial reject
        return 0;
    if((aOutCode | cOutcode) == 0) // trivial accept
        return 1;
}
```
3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
{
 if(cBC[i] < 0) // C is outside wall i (exit so tOut)
 {
 tHit = aBC[i]/(aBC[i] – cBC[i]); // calculate tHit
 tOut = MIN(tOut, tHit);
 }
 else if(aBC[i] < 0) // A is outside wall I (enters so tIn)
 {
 tHit = aBC[i]/(aBC[i] – cBC[i]); // calculate tHit
 tIn = MAX(tIn, tHit);
 }
 if(tIn > tOut) return 0; // CI is empty: early out
}
3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode != 0) // A is outside: tIn has changed. Calculate A_chop
{
 tmp.x = A.x + tIn * (C.x - A.x);
 // do same for y, z, and w components
}
If(cOutcode != 0) // C is outside: tOut has changed. Calculate C_chop
{
 C.x = A.x + tOut * (C.x - A.x);
 // do same for y, z and w components
}
A = tmp;
Return 1; // some of the edges lie inside CVV
Polygon Clipping

- Not as simple as line segment clipping
 - Clipping a line segment yields at most one line segment
 - Clipping a **concave** polygon can yield multiple polygons

- Clipping a **convex** polygon can yield at most one other polygon
Clipping Polygons

- Need more sophisticated algorithms to handle polygons:
 - **Sutherland-Hodgman**: clip any given polygon against a convex clip polygon (or window)
 - **Weiler-Atherton**: Both clipped polygon and clip polygon (or window) can be concave
Tessellation and Convexity

- One strategy is to replace nonconvex (*concave*) polygons with a set of triangular polygons (a *tessellation*)
- Also makes fill easier
References