
Computer Graphics (CS 543)
Lecture 11c: Tone Mapping, Noise &

Procedural Textures

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

Tone Mapping

High Dynamic Range

 Sun’s brightness is about 60,000 lumens

 Dark areas of earth has brightness of 0 lumens

 Basically, world around us has range of 0 – 60,000 lumens
(High Dynamic Range)

 However, monitor has ranges of colors between 0 – 255 (Low
Dynamic Range)

 New file formats have been created for HDR images (wider
ranges). (E.g. OpenEXR file format)

HDR

0 Lumens

60,000 Lumens

LDR

(Range: 256)

High Dynamic Range

 Some scenes contain very bright + very dark areas

 Using uniform scaling factor to map actual intensity to
displayed pixel intensity means:
 Either some areas are unexposed, or

 Some areas of picture are overexposed

Under exposure Over exposure

Tone Mapping

 Technique for scaling intensities in real world images (e.g HDR
images) to fit in displayable range

 Try to capture feeling of real scene: non-trivial

 Example: If coming out of dark tunnel, lights should seem
bright

 General idea: apply different scaling factors to diffferent
parts of the image

HDR

(Range: 60,000) LDR

(Range: 256)

Tone

Mapping

Tone Mapping

Types of Tone Mapping Operators

 Global: Use same scaling factor for all pixels

 Local: Use different scaling factor for different parts
of image

 Time-dependent: Scaling factor changes over time

 Time independent: Scaling factor does NOT change
over time

 Real-time rendering usually does NOT implement
local operators due to their complexity

Simple (Global) Tone Mapping Methods

Motion Blur

 Motion blur caused by exposing film to moving objects

 Motion blur: Blurring of samples taken over time (temporal)

 Makes fast moving scenes appear less jerky

 30 fps + motion blur better than 60 fps + no motion blur

Motion Blur
 Basic idea is to average series of images over time

 Move object to set of positions occupied in a frame, blend
resulting images together

 Can blur moving average of frames. E.g blur 8 images

 Velocity buffer: blur in screen space using velocity of objects

Depth of Field

 We can simulate a real camera

 In photographs, a range of pixels in focus

 Pixels outside this range are out of focus

 This effect is known as Depth of field

Lens Flare and Bloom

 Caused by lens of eye/camera when directed at light

 Halo – refraction of light by lens

 Ciliary Corona – Density fluctuations of lens

 Bloom – Scattering in lens, glow around light

Halo, Bloom, Ciliary Corona – top to bottom

3D and Noise Textures

Solid 3D Texture
Ref: Computer Graphics using OpenGL (Third edition) by Hill and Kelley, pg 648-656

 Sometimes called 3D texture

 As if object is carved out of textured material. E.g. Wood,
marble

 Texture: Each (x,y,z) point maps to (r,g,b) color
 f(x,y,z) -> (r,g,b)

Checkerboard Texture

 Imagine cubes of alternating color, each of dimension (S.x,
S.y, S.z) placed next to each other

 A 3D texture for a checkerboard pattern can be written as:

jump(x, y, z) = [(int)(x/S.x) + (int)(y/S.y) + (int)(z/S.z))] % 2

 3D texture lookup returns color 1 if jump = 0 and color 2
if jump = 1

Wood Texture
 Grain in log of wood due to concentric rings varying color

 As distance from some axis increases, functions jumps back
and forth between 2 values

 This effect can be simulated with the modulo function

rings(r) = ((int) r) % 2

where

 Rings jumps between 0 and 1 as r increases from 0.

 The following texture jumps between D and D + A
simple_wood(x, y, z) = D + A * rings(r/M));

 Produces rings of thickness M that are concentric about z axis

22 yxr

Wood Texture (Contd)

 Can wobble rings by adding component that varies azimuth θ
about the z axis

rings(r/M + Ksin(θ/N))

 To add a twist to the wobbling grain:

rings(r/M + Ksin(θ/N + Bz))

Marble

 Grain of marble is quite chaotic

 Marble can be simulated by function that
produces a “random value” at each (x,y,z)
point in space

 Imagine each (x,y,z) point assigned with a
random value. E.g. (2,2,1) = 0.7341

 Random values could be stored in massive
lookup table. Typically generated on the fly

Turbulence

M

k

k

k
zyxsnoisezyxsturb

0

),,,,2(
2

1

2

1
),,,(

Marble Texture

 General idea:
 give the marble’s veins smoothly fluctuating behavior (e.g. in z direction)

 Perturb the veins using turb() function

 For instance, start with texture that is constant in x and y,
smoothly varying in z

marble(x, y, z) = undulate(sin(z));

 Above function is too regular

 Modulate sin() argument with

some turbulence

marble(x, y, z) = undulate(sin(z + A turb(s, x, y, z)));

Marble Texture (Contd)

marble(x, y, z) = undulate(sin(z + A turb(s, x, y, z)));

 Parameter s makes turbulence vary more or less rapidly at
different points

 Parameter A changes amount of perturbation

 Example: g spline(sin(2 z A turb(5,x,y,z)))

A = 1 A = 3 A = 6

References

 Interactive Computer Graphics (6th edition), Angel and
Shreiner

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

 Real Time Rendering by Akenine-Moller, Haines and Hoffman

