Computer Graphics (CS 543) Lecture 6c: Introduction to Projection

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

Recall: 3D Viewing and View Volume

Recall: Different View Volume Shapes

Orthogonal view volume (no foreshortening)

Perspective view volume (exhibits foreshortening)

- Different view volume => different look
- Foreshortening? Near objects bigger

View Volume Parameters

- Need to set view volume parameters
 - **Projection type:** perspective, orthographic, etc.
 - Field of view and aspect ratio
 - Near and far clipping planes

Field of View

- View volume parameter
- Determines how much of world in picture (vertically)
- Larger field of view = smaller objects drawn

Near and Far Clipping Planes

• Only objects between near and far planes drawn

Viewing Frustrum

- Near plane + far plane + field of view = Viewing Frustum
- Objects outside the frustum are clipped

Setting up View Volume/Projection Type

- Previous OpenGL projection commands deprecated!!
 - Perspective view volume/projection:
 - gluPerspective(fovy, aspect, near, far) or
 - **glFrustum**(left, right, bottom, top, near, far)
 - Orthographic:
 - **glOrtho**(left, right, bottom, top, near, far)

• Useful functions, so we implement similar in mat.h:

- Perspective(fovy, aspect, near, far) or
- Frustum(left, right, bottom, top, near, far)
- **Ortho**(left, right, bottom, top, near, far)

Perspective(fovy, aspect, near, far)

• Aspect ratio (of near plane) used to calculate window width

Frustum(left, right, bottom, top, near, far)

- Can use Frustrum() in place of Perspective()
- Same view volume **shape**, different **arguments**

near and far measured from camera

Ortho(left, right, bottom, top, near, far)

• For orthographic projection

near and far measured from camera

Demo

• Nate Robbins demo on projection

Example Usage: Setting View Volume/Projection Type

```
void display()
      // clear screen
{
      glClear(GL COLOR BUFFER_BIT);
      // Set up camera position
      LookAt(0,0,1,0,0,0,0,1,0);
               eve at
                             up
      . . . . . . . . . . . .
      // set up perspective transformation
      Perspective(fovy, aspect, near, far);
      // draw something
      display_all(); // your display routine
}
```


Implementation

- Set modelview and projection matrices in application program
- Pass matrices to shader

```
void display(){
    Build 4x4 projection matrix
    .....
    model_view = LookAt(eye, at, up);
    projection = Ortho(left, right, bottom,top, near, far);
```

// pass model_view and projection matrices to shader
glUniformMatrix4fv(matrix_loc, 1, GL_TRUE, model_view);
glUniformMatrix4fv(projection_loc, 1, GL_TRUE, projection);

Implementation


```
in vec4 vPosition;
in vec4 vColor;
Out vec4 color;
uniform mat4 model_view;
Uniform mat4 projection;
```

```
void main()
{
    gl_Position = projection * model_view * vPosition;
    color = vColor;
}
```


References

- Interactive Computer Graphics (6th edition), Angel and Shreiner
- Computer Graphics using OpenGL (3rd edition), Hill and Kelley