
Computer Graphics (CS 543)
Lecture 6b: Viewing & Camera Control

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

3D Viewing?

 Specify a view volume

 Objects inside view volume drawn to viewport (screen)

 Objects outside view volume clipped (not drawn)!

1. Set camera position

2. Set view volume

(3D region of interest)

Different View Volume Shapes

 Different view volume shape => different look

 Foreshortening? Near objects bigger
 Perpective projection causes foreshortening

 Orthogonal projection: no foreshortening

x

y

z

x

y

z

Perspective view volume
Orthogonal view volume

 Object positions initially defined in world frame

 World Frame origin at (0,0,0)

 Objects positioned, oriented (translate, scale, rotate
transformations) applied to objects in world frame

The World Frame

World frame

(Origin at 0,0,0)

Camera Frame

 More natural to describe object positions relative to camera (eye)

 Why?
 Our view of the world

 First person shooter games

Camera Frame

 Viewing: After user chooses camera (eye) position, represent objects in
camera frame (origin at eye position)

 Viewing transformation: Converts object (x,y,z) positions in world frame to
positions in camera frame

World frame

(Origin at 0,0,0)

Camera frame

(Origin at camera)

Objects initially

Specified in world frame

More natural to view

Objects in camera frame

Default OpenGL Camera, View Volume

 Initially Camera at origin: object and camera frames same

 Points in negative z direction

 Default view volume is cube with sides of length 2

clipped out

z=0

2

Default view volume

(objects in volume are seen)

Moving Camera Frame

default frames

Translate objects -5
away from camera

Translate camera +5
away from objects

Same RELATIVE distance after
Same result/look

Moving the Camera Frame

 Object distances relative to camera determined by the model-
view matrix
 Transforms (scale, translate, rotate) go into modelview matrix

 Camera transforms also go in modelview matrix (CTM)

 Why? Combination of object + camera transforms = relative transform

CTM

Camera

Transforms

Object transforms
(Rotate, Scale, Translate)

Moving the Camera

 We can move camera using sequence of rotations and
translations

 Example: side view
 Rotate the camera

 Move it away from origin

 Model-view matrix C = TR

// Using mat.h

mat4 t = Translate (0.0, 0.0, -d);

mat4 ry = RotateY(90.0);

mat4 m = t*ry;

The LookAt Function

 Previously, command gluLookAt to position camera

 gluLookAt deprecated!!

 Homegrown mat4 method LookAt() in mat.h

 Functionality: sets camera position, transforms object
distances to camera frame

void display(){

………

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

……..

}

Builds 4x4 matrix for positioning, orienting

Camera and puts it into variable mv

The LookAt Function
LookAt(eye, at, up)

Programmer defines:
• eye position
• LookAt point (at) and
• Up vector (Up direction usually (0,1,0))

But Why do we set
Up direction?

Nate Robbins LookAt Demo

What does LookAt do?

 Programmer defines eye, lookAt and Up

 LookAt method:
 Forms new axes (u, v, n) at camera

 Transform objects from world to eye camera frame

World coordinate
Frame

Eye coordinate
Frame

Camera with Arbitrary Orientation and
Position

 Define new axes (u, v, n) at eye
 v points vertically upward,

 n away from the view volume,

 u at right angles to both n and v.

 The camera looks toward -n.

 All vectors are normalized.

World coordinate
Frame (old)

Eye coordinate
Frame (new)

LookAt: Effect of Changing Eye Position or
LookAt Point

 Programmer sets LookAt(eye, at, up)

 If eye, lookAt point changes => u,v,n changes

Viewing Transformation Steps

1. Form camera (u,v,n) frame

2. Transform objects from world frame (Compose matrix to
transform coordinates)

 Next, let’s form camera (u,v,n) frame

world

uv
n

x

y

z

(0,0,0)
lookAt

(1,0,0)(0,1,0)
(0,0,1)

Constructing U,V,N Camera Frame

 Lookat arguments: LookAt(eye, at, up)

 Known: eye position, LookAt Point, up vector

 Derive: new origin and three basis (u,v,n) vectors

eye

Lookat Point

90
o

Eye Coordinate Frame
 New Origin: eye position (that was easy)

 3 basis vectors:

 one is the normal vector (n) of the viewing plane,

 other two (u and v) span the viewing plane

eye
Lookat Point

n

u
v

world origin Remember u,v,n should
be all unit vectors
So… Normalize vectors!!!!!

n is pointing away from the
world because we use left
hand coordinate system

N = eye – Lookat Point
n = N / | N |

(u,v,n should all be orthogonal)

Eye Coordinate Frame

 How about u and v?

eye
Lookat

n

uv
V_up •Derive u first -

•u is a vector that is perp
to the plane spanned by
N and view up vector (V_up)

U = V_up x n

u = U / | U |

Eye Coordinate Frame

 How about v?

To derive v from n and u

v = n x u

v is already normalized

eye
Lookat

n

uv
V_up

Eye Coordinate Frame

 Put it all together

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

eye
Lookat

n

uv
V_up

Step 2: World to Eye Transformation

 Next, use u, v, n to compose LookAt matrix

 Transformation matrix (Mw2e) ?
 Matrix that transforms a point P in world frame to P’ in eye frame

P’ = Mw2e x P

uv

n

world

x

y

z

P

1. Come up with transformation
sequence that aligns eye frame
with world frame

2. Apply this transform sequence to
point P in reverse order

Eye
frame

World to Eye Transformation

1. Rotate eye frame to “align” it with world frame

2. Translate (-ex, -ey, -ez) to align origin with eye

uv

n

world

x

y

z

(ex,ey,ez)

Rotation: ux uy uz 0
vx vy vz 0
nx ny nz 0
0 0 0 1

Translation: 1 0 0 -ex
0 1 0 -ey
0 0 1 -ez
0 0 0 1

World to Eye Transformation

 Transformation order: apply the transformation to the object in
reverse order - translation first, and then rotate

Mw2e =

uv

n

world
x

y

z

(ex,ey,ez)

ux uy ux 0 1 0 0 -ex
vx vy vz 0 0 1 0 -ey
nx ny nz 0 0 0 1 -ez
0 0 0 1 0 0 0 1

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

=

Note: e.u = ex.ux + ey.uy + ez.uz

e.v = ex.vx + ey.vy + ez.vz

e.n = ex.nx + ey.ny + ez.nz

Rotation Translation

Multiplied together

= lookAt transform

Order

lookAt Implementation (from mat.h)

mat4 LookAt(const vec4& eye, const vec4& at, const vec4& up)

{

vec4 n = normalize(eye - at);

vec4 u = normalize(cross(up,n));

vec4 v = normalize(cross(n,u));

vec4 t = vec4(0.0, 0.0, 0.0, 1.0);

mat4 c = mat4(u, v, n, t);

return c * Translate(-eye);

}

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

Eye space origin: (Eye.x , Eye.y,Eye.z)

Basis vectors:

n = (eye – Lookat) / | eye – Lookat|
u = (V_up x n) / | V_up x n |
v = n x u

Other Camera Controls

 The LookAt function is only for positioning camera

 Other ways to specify camera position/orientation/movement
 Yaw, pitch, roll

 Elevation, azimuth, twist

 Direction angles

Flexible Camera Control

 Sometimes, we want camera to move

 Like controlling an airplane’s orientation

 Adopt aviation terms:
 Pitch: nose up-down

 Roll: roll body of plane

 Yaw: move nose side to side

Yaw, Pitch and Roll Applied to Camera

Flexible Camera Control

 Create a camera class

class Camera

private:

Point3 eye;

Vector3 u, v, n;…. etc

 Camera methods (functions) to specify slide, pitch, roll, yaw wrt
u,v,n. E.g

cam.slide(1, 0, 2); // slide camera backward 2 and right 1

cam.roll(30); // roll camera 30 degrees

cam.yaw(40); // yaw camera 40 degrees

cam.pitch(20); // pitch camera 20 degrees

Recall: Final LookAt Matrix

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

• Slide along u, v or n

• Changes eye position

• Changes these components

• Pitch, yaw, roll rotates u, v or n

• Changes u, v or n

• E.g. roll rotates u,v

Question: Pitch rotates which axes?

slide

roll

Implementing Flexible Camera Control

 Camera class: maintains current (u,v,n) and eye position

class Camera

private:

Point3 eye;

Vector3 u, v, n;…. etc

 User inputs desired roll, pitch, yaw angle or slide

1. Roll, pitch, yaw: calculate modified vector (u’, v’, n’)

2. Slide: Calculate new eye position

3. Update lookAt matrix, Load it into CTM

Example: Camera Slide

 Recall: the axes are unit vectors

 User changes eye by delU, delV or delN

 eye = eye + changes (delU, delV, delN)

 Note: function below combines all slides into one

void camera::slide(float delU, float delV, float delN)

{

eye.x += delU*u.x + delV*v.x + delN*n.x;

eye.y += delU*u.y + delV*v.y + delN*n.y;

eye.z += delU*u.z + delV*v.z + delN*n.z;

setModelViewMatrix();

}

E.g moving camera by D along its u axis = eye + Du

Function to update new eye, u, v and n

Load Matrix into CTM

void Camera::setModelViewMatrix(void)

{ // load modelview matrix with camera values

mat4 m;

Vector3 eVec(eye.x, eye.y, eye.z);// eye as vector

m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -dot(eVec,u);

m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -dot(eVec,v);

m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -dot(eVec,n);

m[3] = 0; m[7] = 0; m[11] = 0; m[15] = 1.0;

CTM = m; // Finally, load matrix m into CTM Matrix

}

• Slide changes eVec,

• roll, pitch, yaw, change u, v, n

• Call setModelViewMatrix after slide, roll, pitch or yaw

ux uy uz -e . u
vx vy vz -e . v
nx ny nz -e . n
0 0 0 1

Example: Camera Roll

void Camera::roll(float angle)

{ // roll the camera through angle degrees

float cs = cos(3.142/180 * angle);

float sn = sin(3.142/180 * angle);

Vector3 t = u; // remember old u

u.set(cs*t.x – sn*v.x, cs*t.y – sn.v.y, cs*t.z – sn.v.z);

v.set(sn*t.x + cs*v.x, sn*t.y + cs.v.y, sn*t.z + cs.v.z)

setModelViewMatrix();

}

u

v’ v

u’

vuv

vuu

)cos()sin('

)sin()cos('

References

 Interactive Computer Graphics, Angel and Shreiner, Chapter 4

 Computer Graphics using OpenGL (3rd edition), Hill and Kelley

