Rotating in 3D

- Many degrees of freedom. Rotate about what axis?
- 3D rotation: about a defined axis
- Different transform matrix for:
 - Rotation about x-axis
 - Rotation about y-axis
 - Rotation about z-axis
Rotating in 3D

- New terminology
 - **X-roll:** rotation about x-axis
 - **Y-roll:** rotation about y-axis
 - **Z-roll:** rotation about z-axis

- Which way is +ve rotation
 - Look in –ve direction (into +ve arrow)
 - CCW is +ve rotation
Rotating in 3D

a) the barn

b) -70° x-roll

c) 30° y-roll

d) -90° z-roll
Rotating in 3D

- For a rotation angle, β about an axis
- Define:

$$c = \cos(\beta) \quad s = \sin(\beta)$$

x-roll or (RotateX)

$$R_{x}(\beta) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & c & -s & 0 \\
0 & s & c & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
Rotating in 3D

y-roll (or RotateY)

\[R_y(\beta) = \begin{pmatrix} c & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ -s & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

Rules:
• Write 1 in rotation row, column
• Write 0 in the other rows/columns
• Write c,s in rect pattern

z-roll (or RotateZ)

\[R_z(\beta) = \begin{pmatrix} c & -s & 0 & 0 \\ s & c & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]
Example: Rotating in 3D

Question: Using y-roll equation, rotate \(P = (3, 1, 4) \) by 30 degrees:

Answer: \(c = \cos(30) = 0.866, \ s = \sin(30) = 0.5, \) and

\[
Q = \begin{pmatrix}
 c & 0 & s & 0 \\
 0 & 1 & 0 & 0 \\
 -s & 0 & c & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 3 \\
 1 \\
 4 \\
 1
\end{pmatrix} = \begin{pmatrix}
 4.6 \\
 1 \\
 1.964 \\
 1
\end{pmatrix}
\]

Line 1: \((3 \times c) + (1 \times 0) + (4 \times s) + (1 \times 0)\)

\[= (3 \times 0.866) + (4 \times 0.5) = 4.6\]
3D Rotation

- **Rotate(angle, ux, uy, uz):** rotate by angle β about an arbitrary axis (a vector) passing through origin and (ux, uy, uz)

- **Note:** Angular position of u specified as azimuth/longitude (Θ) and latitude (ϕ)
Approach 1: 3D Rotation About Arbitrary Axis

- Can compose arbitrary rotation as combination of:
 - X-roll (by an angle β_1)
 - Y-roll (by an angle β_2)
 - Z-roll (by an angle β_3)

\[
M = R_z(\beta_3)R_y(\beta_2)R_x(\beta_1)
\]

Read in reverse order
Approach 1: 3D Rotation using Euler Theorem

- **Classic:** use Euler’s theorem
- **Euler’s theorem:** any sequence of rotations = one rotation about some axis
- Want to rotate β about arbitrary axis u through origin
- Our approach:
 1. Use two rotations to align u and x-axis
 2. Do **x-roll** through angle β
 3. Negate two previous rotations to de-align u and x-axis
Approach 1: 3D Rotation using Euler Theorem

- **Note:** Angular position of \(\mathbf{u} \) specified as azimuth (\(\Theta \)) and latitude (\(\phi \))
- First try to align \(\mathbf{u} \) with x axis
Approach 1: 3D Rotation using Euler Theorem

- **Step 1:** Do y-roll to line up rotation axis with x-y plane

![Diagram showing 3D rotation with Euler angles and rotation matrix $R_y(\theta)$]
Approach 1: 3D Rotation using Euler Theorem

- **Step 2:** Do z-roll to line up rotation axis with x axis

\[R_z(-\phi)R_y(\theta) \]
Approach 1: 3D Rotation using Euler Theorem

- **Remember**: Our goal is to do rotation by β around u
- But axis u is now lined up with x axis. So,
- **Step 3**: Do x-roll by β around axis u

$$R_x(\beta)R_z(-\phi)R_y(\theta)$$
Approach 1: 3D Rotation using Euler Theorem

- Next 2 steps are to return vector \mathbf{u} to original position
- **Step 4:** Do z-roll in x-y plane

$$R_z(\phi)R_x(\beta)R_z(-\phi)R_y(\theta)$$
Approach 1: 3D Rotation using Euler Theorem

- **Step 5:** Do y-roll to return \(u \) to original position

\[
R_u(\beta) = R_y(-\theta)R_z(\phi)R_x(\beta)R_z(-\phi)R_y(\theta)
\]
Approach 2: Rotation using Quaternions

- Extension of imaginary numbers from 2 to 3 dimensions
- Requires 1 real and 3 imaginary components i, j, k

\[q = q_0 + q_1 i + q_2 j + q_3 k \]

- Quaternions can express rotations on sphere smoothly and efficiently
Approach 2: Rotation using Quaternions

- Derivation skipped! Check answer
- Solution has lots of symmetry

\[R(\beta) = \begin{pmatrix}
 c + (1-c)u_x^2 & (1-c)u_y u_x + su_z & (1-c)u_z u_x + su_y & 0 \\
 (1-c)u_x u_y + su_z & c + (1-c)u_y^2 & (1-c)u_z u_y - su_x & 0 \\
 (1-c)u_x u_z - su_y & (1-c)u_y u_z - su_x & c + (1-c)u_z^2 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix} \]

\[c = \cos(\beta) \quad s = \sin(\beta) \quad \text{Arbitrary axis } u \]
Inverse Matrices

- Can compute inverse matrices by general formulas
- But some easy \textit{inverse transform} observations
 - Translation: $T^{-1}(d_x, d_y, d_z) = T(-d_x, -d_y, -d_z)$
 - Scaling: $S^{-1}(s_x, s_y, s_z) = S(1/s_x, 1/s_y, 1/s_z)$
 - Rotation: $R^{-1}(q) = R(-q)$
 - Holds for any rotation matrix
Instancing

- During modeling, often start with simple object centered at origin, aligned with axis, and unit size
- Can declare one copy of each shape in scene
- E.g. declare 1 mesh for soldier, 500 instances to create army
- Then apply *instance transformation* to its vertices to Scale, Orient, Locate
Rotation About Arbitrary Point other than the Origin

- Default rotation matrix is about origin
- How to rotate about any arbitrary point \(p_f \) (Not origin)?
 - Move fixed point to origin \(T(-p_f) \)
 - Rotate \(R(\theta) \)
 - Move fixed point back \(T(p_f) \)

So, \(M = T(p_f) \, R(\theta) \, T(-p_f) \)
Scale about Arbitrary Center

- Similarly, default scaling is about origin
- To scale about arbitrary point \(P = (P_x, P_y, P_z) \) by \((S_x, S_y, S_z) \)
 1. **Translate** object by \(T(-P_x, -P_y, -P_z) \) so \(P \) coincides with origin
 2. **Scale** object by \((S_x, S_y, S_z) \)
 3. **Translate** object back: \(T(P_x, P_y, P_z) \)
- In matrix form: \(T(P_x, P_y, P_z) (S_x, S_y, S_z) T(-P_x, -P_y, -P_z) \) * \(P \)
Example

- Rotation about z axis by 30 degrees about a fixed point (1.0, 2.0, 3.0)

  ```
  mat 4 m = Identity();
  m = Translate(1.0, 2.0, 3.0) *
      Rotate(30.0, 0.0, 0.0, 1.0) *
      Translate(-1.0, -2.0, -3.0);
  ```

- Remember last matrix specified in program (i.e. translate matrix in example) is first applied
References

- Angel and Shreiner, Chapter 3