
Computer Graphics (CS 543)
Lecture 1a: Introduction to

Computer Graphics

Prof Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

What is Computer Graphics (CG)?

 Computer graphics: algorithms, mathematics, data structures ..…
that computer uses to generate PRETTY PICTURES

 Techniques (e.g. draw a cube, polygon) evolved over years

 Built into programmable libraries (OpenGL, DirectX, etc)

Computer-Generated!
Not a picture!

Photorealistic Vs Real-Time Graphics

• Photo-realistic: E.g ray tracing
Highest quality image possible
slow: may take days to render

• Real Time graphics: E.g. game engine
Milliseconds to render (30 FPS)
Lower image quality

This Class

Not this Class

Uses of Computer Graphics: Entertainment

 Entertainment: games

Courtesy: Super Mario Galaxy 2

Courtesy: Spiderman

Movies

Uses of Computer Graphics

 Image processing:

 alter images, remove noise, super-impose images

Original Image Sobel Filter

Uses of Computer Graphics

Simulators

Courtesy: Evans and Sutherland

Display math functions

E.g matlab

Uses of Computer Graphics

 Scientific analysis and visualization:

Courtesy:

Human Brain Project,
Denmark

2D Vs. 3D

 2-Dimensional (2D)
 Flat

 Objects no notion of distance from viewer

 Only (x,y) color values on screen

 3-Dimensional (3D)
 Objects have distances from viewer

 (x,y,z) values on screen

• This class covers both 2D & 3D!
• Also interaction: Clicking, dragging

About This Course

 Computer Graphics has many aspects
 Computer Scientists create/program graphics tools (e.g. Maya, photoshop)

 Artists use CG tools/packages to create pretty pictures

 Most hobbyists follow artist path. Not much math! E.g. use blender

About This Course

 This Course: Computer Graphics for computer scientists!!!

 Teaches concepts, uses OpenGL as concrete example

 Course is NOT
 just about programming OpenGL

 a comprehensive course in OpenGL. (Only parts of OpenGL covered)

 about using packages like Maya, Photoshop

About This Course

 Class is concerned with:
 How to program computer graphics

 Underlying mathematics, data structures, algorithms

 This course is a lot of work. Requires:
 C/C++, shader programming

 Lots of math, linear algebra, matrices

 We will combine:
 Programmer’s view: Program OpenGL APIs

 Under the hood: Learn OpenGL internals (graphics algorithms, math,
implementation)

Course Text
 Interactive Computer Graphics: A Top-Down Approach with Shader-based

OpenGL by Angel and Shreiner (6th edition), 2012

 Buy 6th edition (pure OpenGL) .…… NOT 7th edition (WebGL)!!!

 Supplementary books available through the WPI library. How?

Syllabus Summary

 3 Exams (50%), 5 Projects (50%)

 Projects:
 Develop OpenGL/GLSL code on any platform, must port to Zoolab machine

 May discuss projects but turn in individual projects

 Class website: http://web.cs.wpi.edu/~emmanuel/courses/cs543/f18/

 Cheating: Immediate ‘F’ in the course
 Note: Using past projects on Internet, gitHub, bitBucket is cheating!

 Advice:
 Come to class

 Read textbook

 Understand concepts before coding

Elements of 2D Graphics

 Polylines

 Text

 Filled regions

 Raster images (pictures)

Elements of 2D Graphics

 Polyline: vertices (corners) connected by straight lines

 Attributes: line thickness, color, etc

vertex

Text

 Text attributes: Font, color,
size, spacing, and orientation

 Devices have:
 text mode

 graphics mode.

 Graphics mode: Text is drawn

 Text mode: Text produced by
character generator, not drawn

Filled Regions

 Filled region: shape filled with a color or pattern

 E.g: polygons

Polygons Filled with Color Polygons Filled with Pattern

Raster Images

 Raster image (picture): 2D matrix of pixels (picture elements), in
different colors or grayscale.

Grayscale Image Color Image

Computer Graphics Libraries

 Functions to draw line, circle, image, etc

 Previously device-dependent
 Different OS => different graphics library

 Tedious! Difficult to port (e.g. move program Windows to Linux)

 Error Prone

 Now cross-platform, device-independent libraries
 APIs: OpenGL, DirectX

 Working OpenGL program few changes to move from Windows to
Linux, etc

Graphics Processing Unit (GPU)

 OpenGL implemented on GPU chip/hardware => FAST!!

 Programmable: as shaders

 GPU located either on
 PC motherboard (Intel) or

 Separate graphics card (Nvidia or ATI)

GPU on PC motherboard GPU on separate PCI express card

OpenGL Basics

 OpenGL’s function is Rendering (drawing)

 Rendering? – Convert geometric/mathematical object
descriptions into images

 OpenGL can render (draw):
 2D and 3D

 Geometric primitives (lines, dots, etc)

 Bitmap images (pictures, .bmp, .jpg, etc)

OpenGL

Program OpenGL

GL Utility Toolkit (GLUT)
 OpenGL does NOT manage drawing window

 OpenGL

 Window system independent

 Concerned only with drawing (2D, 3D, images, etc)

 No window management (create, resize, etc), very portable

 GLUT:
 Minimal window management

 Runs on different windowing systems (e.g. Windows, Linux)

 Program that uses GLUT easily ported between windowing systems.

GLUT

OpenGL

GL Utility Toolkit (GLUT)

 No bells and whistles
 No sliders, dialog boxes, elaborate menus, etc

 To add bells and whistles, use system’s API (or GLUI):
 X window system

 Apple: AGL

 Microsoft :WGL, etc

GLUT
(minimal)

Slider Dialog box

OpenGL Basics: Portability

 OpenGL programs behave same on different devices, OS

 Maximal portability

 Display device independent (Monitor type, etc)

 OS independent (Unix, Windows, etc)

 Window system independent based (Windows, X, etc)

 E.g. If student writes OpenGL code on Apple Mac at home, it runs
well on Zoolab Windows machines

OpenGL Programming Interface

 Programmer view of OpenGL

 Application Programmer Interface (API)

 Writes OpenGL application programs. E.g

glDrawArrays(GL_LINE_LOOP, 0, N);

glFlush();

Simplified OpenGL Pipeline

 Vertices input, sequence of rendering steps (vertex processor,
clipper, rasterizer, fragment processor) image rendered

 This class: learn graphics rendering steps, algorithms, their order

Vertex
Shader

Fragment
(Pixel)
Shader

Converts
3D to 2D

 To draw a shape, OpenGL colors a corresponding group of pixels
(fragments) called rasterization
 E.g yellow triangle converted to group of pixels to be colored yellow

 Vertex shader code manipulates vertices of shapes

 Fragment shader code manipulates pixels

Vertex Vs Fragment

Vertices Fragments

(pixels)

Converts shape

to pixels (fragments)

OpenGL Program?

 Usually has 3 files:

 .cpp file: containing OpenGL code, main() function
 Does initialization, generates/loads geometry to be drawn

 Vertex shader: manipulates vertices (e.g. move vertices)

 Fragment shader: manipulates pixels/fragments (e.g change
pixel/fragment color)

.cpp program

Rendered

Image

Framebuffer

 Dedicated memory location:

 Draw into framebuffer => shows up on screen

 Located either on CPU (software) or GPU (hardware)

References

 Angel and Shreiner, Interactive Computer Graphics (6th

edition), Chapter 1

 Hill and Kelley, Computer Graphics using OpenGL (3rd edition),
Chapter 1

