Computer Graphics (CS 543)
Lecture 10 (Part 3): Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Rasterization

- Rasterization produces set of fragments
- Implemented by graphics hardware
- Rasterization algorithms for primitives (e.g. lines, circles, triangles, polygons)

Rasterization: Determine Pixels (fragments) each primitive covers
Line drawing algorithm

- Programmer specifies \((x,y)\) of end pixels
- Need algorithm to determine pixels on line path

Line: \((3,2) \rightarrow (9,6)\)

Which intermediate pixels to turn on?
Line drawing algorithm

- Pixel \((x,y)\) values constrained to integer values
- Computed intermediate values may be floats
- Rounding may be required. E.g. \((10.48, 20.51)\) rounded to \((10, 21)\)
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies
Line Drawing Algorithm

- Slope-intercept line equation
 - \(y = mx + b \)
 - Given 2 end points \((x_0, y_0), (x_1, y_1)\), how to compute \(m\) and \(b\)?

\[
m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad y_0 = mx_0 + b \implies b = y_0 - m \cdot x_0
\]
Line Drawing Algorithm

- Numerical example of finding slope m:
 - $(Ax, Ay) = (23, 41)$, $(Bx, By) = (125, 96)$

$$m = \frac{By - Ay}{Bx - Ax} = \frac{96 - 41}{125 - 23} = \frac{55}{102} = 0.5392$$
Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, m:

- Step through line, starting at (x0, y0)
- **Case a: (m < 1)** x incrementing faster
 - Step in x=1 increments, compute y (a fraction) and round
- **Case b: (m > 1)** y incrementing faster
 - Step in y=1 increments, compute x (a fraction) and round
DDA Line Drawing Algorithm (Case a: \(m < 1 \))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{1}
\]

\[\Rightarrow y_{k+1} = y_k + m\]

Example, if first end point is (0,0)
Example, if \(m = 0.2 \)
Step 1: \(x = 1, y = 0.2 \) => shade \((1,0)\)
Step 2: \(x = 2, y = 0.4 \) => shade \((2, 0)\)
Step 3: \(x = 3, y = 0.6 \) => shade \((3, 1)\)
... etc
DDA Line Drawing Algorithm (Case b: m > 1)

\[m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{1}{x_{k+1} - x_k} \]

\[\Rightarrow x_{k+1} = x_k + \frac{1}{m} \]

Example, if first end point is (0,0)
if 1/m = 0.2

Step 1: \(y = 1, x = 0.2 \) => shade (0,1)
Step 2: \(y = 2, x = 0.4 \) => shade (0, 2)
Step 3: \(y = 3, x = 0.6 \) => shade (1, 3)
... etc

\[x = x_0 \quad y = y_0 \]
Illuminate pixel (round(x), y)

\[y = y + 1 \quad x = x + 1/m \]
Illuminate pixel (round(x), y)

... etc
 Until \(y == y_1 \)
compute \(m \);
if \(m < 1 \):
{
 float \(y = y_0 \); // initial value
 for(int \(x = x_0 \); \(x <= x_1 \); \(x++, y += m \))
 setPixel(\(x \), round(\(y \)));
}
else // \(m > 1 \)
{
 float \(x = x_0 \); // initial value
 for(int \(y = y_0 \); \(y <= y_1 \); \(y++, x += 1/m \))
 setPixel(round(\(x \)), \(y \));
}

- **Note:** \texttt{setPixel}(\(x \), \(y \)) writes current color into pixel in column \(x \) and row \(y \) in frame buffer
Line Drawing Algorithm Drawbacks

● DDA is the simplest line drawing algorithm
 ● Not very efficient
 ● Round operation is expensive

● Optimized algorithms typically used.
 ● Integer DDA
 ● E.g. Bresenham algorithm

● Bresenham algorithm
 ● Incremental algorithm: current value uses previous value
 ● Integers only: avoid floating point arithmetic
 ● Several versions of algorithm: we’ll describe midpoint version of algorithm
Bresenham’s Line-Drawing Algorithm

- **Problem**: Given endpoints \((Ax, Ay)\) and \((Bx, By)\) of line, determine intervening pixels
- First make two simplifying assumptions (remove later):
 - \((Ax < Bx)\) and
 - \((0 < m < 1)\)
- Define
 - Width \(W = Bx - Ax\)
 - Height \(H = By - Ay\)
Bresenham’s Line-Drawing Algorithm

- Based on assumptions \((Ax < Bx)\) and \((0 < m < 1)\)
 - \(W, H\) are +ve
 - \(H < W\)
- Increment \(x\) by +1, \(y\) incr by +1 or stays same
- Midpoint algorithm determines which happens
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x + 1, y + \frac{1}{2}) \)

Build equation of actual line, compare to midpoint

Case a: If midpoint (red dot) is below line, Shade upper pixel, \((x + 1, y + 1)\)

Case b: If midpoint (red dot) is above line, Shade lower pixel, \((x + 1, y)\)
Build Equation of the Line

- Using similar triangles:
 \[
 \frac{y - Ay}{x - Ax} = \frac{H}{W}
 \]
 \[
 H(x - Ax) = W(y - Ay)
 \]
 \[-W(y - Ay) + H(x - Ax) = 0\]

- Above is equation of line from \((Ax, Ay)\) to \((Bx, By)\)
- Thus, any point \((x,y)\) that lies on ideal line makes eqn = 0
- Double expression (to avoid floats later), and call it \(F(x,y)\)
 \[
 F(x,y) = -2W(y - Ay) + 2H(x - Ax)
 \]
Bresenham’s Line-Drawing Algorithm

- So, \(F(x, y) = -2W(y - Ay) + 2H(x - Ax) \)

- Algorithm, If:
 - \(F(x, y) < 0 \), (x, y) above line
 - \(F(x, y) > 0 \), (x, y) below line

- **Hint**: \(F(x, y) = 0 \) is on line

- Increase y keeping x constant, \(F(x, y) \) becomes more negative
Bresenham’s Line-Drawing Algorithm

- **Example:** to find line segment between (3, 7) and (9, 11)

 \[F(x, y) = -2W(y - Ay) + 2H(x - Ax) \]
 \[= (-12)(y - 7) + (8)(x - 3) \]

- For points on line. E.g. (7, 29/3), \(F(x, y) = 0 \)
- \(A = (4, 4) \) lies below line since \(F = 44 \)
- \(B = (5, 9) \) lies above line since \(F = -8 \)
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x_0 + 1, y_0 + \frac{1}{2}) \)

Case a: If \(M \) below actual line
\(F(M_x, M_y) < 0 \)
shade upper pixel \((x + 1, y + 1)\)

Case b: If \(M \) above actual line
\(F(M_x, M_y) > 0 \)
shade lower pixel \((x + 1, y)\)
Can compute $F(x,y)$ incrementally

Initially, midpoint $M = (Ax + 1, Ay + \frac{1}{2})$

$$F(M_x, M_y) = -2W(y - Ay) + 2H(x - Ax)$$

i.e. $F(Ax + 1, Ay + \frac{1}{2}) = 2H - W$

Can compute $F(x,y)$ for next midpoint incrementally

If we increment to $(x + 1, y)$, compute new $F(M_x, M_y)$

$$F(M_x, M_y) += 2H$$

i.e. $F(Ax + 2, Ay + \frac{1}{2}) - F(Ax + 1, Ay + \frac{1}{2}) = 2H$
Can compute $F(x,y)$ incrementally

If we increment to $(x + 1, y + 1)$

$$F(Mx, My) += 2(H - W)$$

i.e. $F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + 1/2) = 2(H - W)$
Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, InPoint b)
{ // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x – a.x, H = b.y – a.y;
 int F = 2 * H – W; // current error term
 for(int x = a.x; x <= b.x; x++)
 {
 setpixel at (x, y); // to desired color value
 if F < 0 // y stays same
 F = F + 2H;
 else{
 y++, F = F + 2(H – W) // increment y
 }
 }
}

- Recall: F is equation of line
Bresenham’s Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions $0 < m < 1$ and $A_x < B_x$

- Can add code to remove restrictions
 - When $A_x > B_x$ (swap and draw)
 - Lines having $m > 1$ (interchange x with y)
 - Lines with $m < 0$ (step $x++$, decrement y not incr)
 - Horizontal and vertical lines (pretest $a.x = b.x$ and skip tests)
References