Computer Graphics (CS 543)
Lecture 10 (Part 2): Viewport
Transformation & Hidden Surface
Removal

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Viewport Transformation

e After clipping, do viewport transformation

projection

modelview
matrix

User implements in

Vertex shader

maﬂrg ________

1

I

I

| clip -

I

I

I

I

I

N P
Manufacturer
Implements

viewportl
malrix

In hardware

Viewport Transformation

e Maps CVV (x,y) -> screen (x, y) coordinates

gIViewporth,y, width, height)

\

AY Screen
coordinates

|:> height

N
4%1 X
\

Canonical (x.y) width X
View volume

Viewport Transformation: What of z?

e Also maps z (pseudo-depth) from [-1,1] to [0,1]
e [0,1] pseudo-depth stored in depth buffer,
e Used for Depth testing (Hidden Surface Removal)

Hidden surface Removal T

e Drawing polygonal faces on screen consumes CPU cycles
e Cannot see every surface in scene

e To save time, draw only surfaces we see

e Surfaces we cannot see and elimination methods:

e Occluded surfaces: hidden surface removal (visibility)
e Back faces: back face culling
e Faces outside view volume: viewing frustrum culling

e Classes of HSR techniques:
o Object space techniques: applied before rasterization

e Image space techniques: applied after vertices have been
rasterized

Visibility (hidden surface removal)

e Overlapping opaque polygons
e Correct visibility? Draw only the closest polygon

e (remove the other hidden surfaces)

wrong visibility Correct visibility

Image Space Approach

e Start from pixel, work backwards into the scene

e Through each pixel, (nm for an h X m frame buffer)
find closest of kK polygons

e Complexity O(nmk)
e Examples:

Ray tracing
Z-buffer : OpenGL

e

/77777
/77777

COP

OpenGL - Image Space Approach

" Paint pixel with color of closest object

for (each pixel in image) {
determine the object closest to the pixel
draw the pixel using the object’s color

¥

Z buffer lllustration

Correct Final image

0.5

| 2=0.3

eye

Top View

Z buffer lllustration

Step 1: Initialize the depth buffer

1.0 | 1.0 1.0 | 1.0
1.0} 10| 10| 104
1.0| 10| 10| 1.0
1.0| 10| 10| 1.0

Largest possible
z values is 1.0

Z buffer lllustration

Step 2: Draw blue polygon
(actually order does not affect final result)

] 7 =05

10 ——— ;03
1.0 T

1.0 \

1.0 eye

1. Determine group of pixels corresponding to blue polygon
2. Figure out z value of blue polygon for each covered pixel (0.5)
3. For each covered pixel, z = 0.5 is less than 1.0

1. Smallest z so far = 0.5, color = blue

Z buffer lllustration

Step 3: Draw the yellow polygon

1.0 | 1.0] 1.0 | 1.0
1.0 |03 | 03| 1.0
03| 03 | 1.0
1.0| 1.0

1. Determine group of pixels corresponding to yellow polygon
2. Figure out z value of yellow polygon for each covered pixel (0.3)

3. For each covered pixel, z = 0.3 becomes minimum, color = yellow

z-buffer drawback: wastes resources drawing and redrawing faces

OpenGL HSR Commands

° 3 main commands to do HSR

e glutinitDisplayMode(GLUT DEPTH | GLUT_RGB)
instructs openGL to create depth buffer

e (lEnable(GL DEPTH TEST) enables depth testing

e (glClear(GL _COLOR_BUFFER_BIT |
GL DEPTH BUFFER BIT) initializes depth buffer every
time we draw a new picture

Z-buffer Algorithm

Initialize every pixel’s z value to 1.0

rasterize every polygon
For each pixel in polygon, find its z value (interpolate)

Track smallest z value so far through each pixel

As we rasterize polygon, for each pixel in polygon
If polygon’s z through this pixel < current min z through pixel

Paint pixel with polygon’s color

Find depth (z) of every
polygon at each pixel

Z (depth) Buffer Algorithm

Depth of polygon being Largest depth seen so far
rasterized at pixel (X, y) Through pixel (X, y)

For each polygon {

for each pixel (x,y) in polygon area {

v
If (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (X,y)

}
}
¥

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Z-Buffer Depth Compression

e Pseudodepth calculation: Recall that we chose

parameters (a and b) to map z from range [near, far]
to pseudodepth range[-1,1]

2N

X max— xmin
0

0
0

0 right + left
right — left
2N top + bottom 0
top —bottom tpp —hottom
0 —(F+N)| | —2FN
F-N F-N
0

These values map z values of original

view volume to [-1, 1] range

i

N < X

Z-Buffer Depth Compression

e This mapping is almost linear close to eye
e Non-linear further from eye, approaches asymptote
e Also limited number of bits

e Thus, two z values close to far plane may map to
same pseudodepth: Errors!!

q=—FN

s F—N
Mapped z aP7+b b 2FN
Pz ~ F-N
1
N
I | » Actual z
F Pz

-1

Painter’s HSR Algorithm

e Render polygons farthest to nearest
e Similar to painter layers oil paint

naw

Viewer sees B behind A Render B then A

Depth Sort

e Requires sorting polygons (based on depth)
O(n log n) complexity to sort n polygon depths

Not every polygon is clearly in front or behind other

polygons
A

T -

Zmax

i I szin
Polygons sorted by £ E p

distance from COP Palygons -

Distance from COP

Easy Cases

e Case a: A lies behind all polygons “ @

Distance from COP

1
e
-
e
O
=

Polygons

e Case b: Polygons overlap inzbut notinxory

Hard Cases

i

7
/)

Overlap in (x,y) and z ranges

cyclic overlap

penetration

Back Face Culling

e Back faces: faces of opaque object that are “pointing
away” from viewer

e Back face culling: do not draw back faces (saves

resources)
Back face @
AVANEE

e How to detect back faces?

Back Face Culling

e Goal: Testis a face F is is backface
e How? Form vectors

View vector, V

Normal N to face F

o . &

V

Backface test: F is backface if N.V < O why??

Back Face Culling: Draw mesh front faces

void drawFrontFaces()

{

for(int f = 0;f < numFaces; f++)

{

if(isBackFace(f,) continue; < ITN.V<O
gIDrawArrays(GL_POLYGON, 0, N);

View-Frustum Culling

Goal: Remove objects outside view frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Clippec e
—

Not Clipped

Ray Tracing

e Ray tracing is another image space method

e Ray tracing: Cast a ray from eye through each
pixel into world.

e Ray tracing algorithm figures out: what object
seen in direction through given pixel?

N
N

N
A\

=

A

oK
<‘<

-

><

VAV

P 4

Topic of grad class

000
0000
(Y XX
3
Combined z-buffer and Gouraud Shading (Hill) | «
e Can combine shading and hsr through scan line algorithm
for(int y = ybott; y <= ytop; y++) // for each scan line
{
for(each polygon){
find xleft and xright
find dleft, dright, and dinc
find colorleft and colorright, and colorinc
for(int x = xleft, c = colorleft, d = dleft; x <= xright; A color3
X++, c+= colorinc, d+= dinc) ytop
if(d < d[x][y]) color
{ ye lor2
put c into the pixel at (x, y) color
d[x][y] = d; // update closest depth yS
I ybott
} colorl

xleft xright

v

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

