Computer Graphics (CS 543)
Lecture 7 (Part 1): Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)




Introduction to Shadows

e Shadows give information on relative positions of objects

Use ambient +
diffuse + specular Use just ambient
components component



Introduction to Shadows

e Two popular shadow rendering methods:

Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing (covered later)




Projective Shadows

e Oldest method: Used in early flight simulators
e Projection of polygon is polygon called shadow polygon

(> y1 Z/)

Actual polygon

- x_—~ Shadow polygon



Projective Shadows :

e Works for flat surfaces illuminated by point light
e For each face, project vertices V to find V’ of shadow polygon
e Object shadow = union of projections of faces

A n

ITont



Projective Shadow Algorithm

e Project light-object edges onto plane
e Algorithm:

First, draw ground plane using specular+diffuse+ambient
components

Then, draw shadow projections (face by face) using only
ambient component



Projective Shadows for Polygon

1. Iflightis at(x, vy, z)

2. Vertexat(x,vy, z)

3.  Would like to calculate shadow polygon vertex V projected
onto ground at (x,, 0, z,)

(x1. yi. z)

<

(X.y.2)

= X
(X5,0,2,)

Ground plane:y =0



Projective Shadows for Polygon

e |f we move original polygon so that light source is at origin

e Matrix M projects a vertex V to give y
A

its projection V' in shadow polygon

<

Il
o o o
ro m o
o O O
O O o o

|
<




Building Shadow Projection Matrix

1. Translate source to origin with T(-x,, -y, -z,)
2. Perspective projection
3. Translate back by T(x, y,, z))

100 x]t % % %100 —x

M201Oy,8(1)(1)8010—y,

0 0 1 gz 1 0 0 1 -z

_0001_0W00_0001_
u | _

\ Final matrix that projects

Vertex V onto V'’ in shadow polygon



Code snippets?

e Set up projection matrix in OpenGL application

float light[3]; 7/ location of light
mat4 m; // shadow projection matrix initially i1dentity

M[3][1] = -1.0/1ight[1];

<

Il
o O O K
ro ~ o
o B O O
o o o o

|
<



Projective Shadow Code

e Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}

e Copy square to VBO
e Pass modelview, projection matrices to vertex shader



What next?

e Next, we load model_view as usual then draw
original polygon

e Then load shadow projection matrix, change color to
black, re-render polygon

(> 1 z1)

>

1. Load modelview
draw polygon as usual

\ = x 2. Modify modelview with
Shadow projection matrix
Re-render as black (or ambient)



Shadow projection Display( ) Function

void display( )
{
mat4 mm;
// clear the window
glClear(GL_COLOR _BUFFER _BIT | GL DEPTH BUFFER_BIT);

// render red square (original square) using modelview
// matrix as usual (previously set up)
gluniformdafv(color_loc, 1, red);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);



Shadow projection Display( ) Function

// modify modelview matrix to project square
// and send modified model view matrix to shader
mm = model view
* Translate(light[0], light[1l], light[2]
*m
* Translate(-light[0], -light[1] )\ -light[2]);
gluniformMatrix4fv(matrix_loc, 1, GL_TRYE, mm);

//and re-render square as

// black square (or using only ambient component)
gluniformdafv(color_loc, 1, black);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glutSwapBuffers( );

o O O
=<

1

o O o -

o » O O

© © o o

o O O k-

o O~ O

o B, O O



Shadow Buffer Approach

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces

e Cons: needs lots of memory
e Depth buffer?




OpenGL Depth Buffer (Z Buffer) :

e Depth: While drawing objects, depth buffer stores
distance of each polygon from viewer

e Why? If multiple polygons overlap a pixel, only

closest one polygon is drawn
Depth

1 Z:0.5‘4

10 | 1.0] 1.0 | 1.0 | o
10 |03 | 03] 1.0 T

“ | 1.0
: 1.0 eye




Setting up OpenGL Depth Buffer

Note: You did this in order to draw solid cube, meshes

glutinitDisplayMode(GLUT_DEPTH | GLUT _RGB)
instructs openGL to create depth buffer

glEnable(GL DEPTH TEST) enables depth testing

glClear(GL_COLOR BUFFER BIT |
GL_DEPTH_BUFFER BIT)

Initializes depth buffer every time we draw a new picture



Shadow Buffer Theory

e Along each path from light
e Only closest object is lit
e Other objects on that path in shadow

e Shadow buffer stores closest object on each path

source shadow
buffer

| / B < ,screen and

‘> i ”

In shadow



Shadow Buffer Approach

e Rendering in two stages:
e Loading shadow buffer
e Render the scene




Loading Shadow Buffer oo

e Initialize each element to 1.0

e Position a camera at light source

e Rasterize each face in scene updating closest object
e Shadow buffer tracks smallest depth on each path

A c

5 ) J...’..
( P B < ,screen and
| | ) / depth buffer
.IIll ) = = =




Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer

e If d[i][j] < D (other object on this path closer to light)
point P is in shadow
set lighting using only ambient ) ’j

e Otherwise, not in shadow /w
2l

In shadow



Loading Shadow Buffer

e Shadow buffer calculation is independent of eye

position

e |In animations, shadow buffer loaded once

e If eye moves, no need for recalculation

e If objects move, recalculation required

source shadow
buffer

-

L g
,screen and
/ depth buffer




Other Issues

e Point light sources => simple hard shadows, unrealistic
e Extended light sources => more realistic
e Shadow has two parts:

e Umbra (Inner part) => no light

e Penumbra (outer part) => some light




Fog example :

e Fog is atmospheric effect
e Better realism, helps determine distances



Fog

e Fog was part of OpenGL fixed function pipeline

e Programming fixed function fog
e Parameters: Choose fog color, fog model
e Enable: Turniton

e Fixed function fog deprecated!!
e Shaders can implement even better fog

e Shaders implementation: fog applied in fragment
shader just before display




Rendering Fog

e Mix some color of fog: C;  + color of surface: C

c, = fc, +@-f)e, fe[0]]

o If f=0.25, output color = 25% fog + 75% surface color

e f computed as function of distance z
e 3 ways: linear, exponential, exponential-squared
e Linear:

Zend - Zstart




Fog Shader Fragment Shader Example

f— Zeng — L

float dist = abs(Position.z); i
Float fogFactor = (Fog.-.maxDist — dist)/ z/////

Fog.maxDist — Fog.minDist);
fogFactor = clamp(fogFactor, 0.0, 1.0);

start

vec3 shadeColor = ambient + diffuse + specular
vec3 color = mix(Fog.color, shadeColor,fogFactor);
FragColor = vec4(color, 1.0);

c,=Tc, +(1-1)c,



Fog

e Exponential T =€
e Squared exponential

—d;z

p

F (@)

e Exponential derived from Beer’s law

e Beer’s law: intensity of outgoing light diminishes

exponentially with distance

 e——

fog factor equations

0.6

04

surface color amount

0.2

0.8 “* | ! 20.33
/h/x /expexp'z 0.66

)

= 3
relative distance



Fog 1T

e fvalues for different depths (z,)can be pre-computed
and stored in a table on GPU

e Distances used in f calculations are planar

e Can also use Euclidean distance from viewer or radial
distance to create radial fog

viewer viewer viewer



References

e Interactive Computer Graphics (6t edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

e Real Time Rendering by Akenine-Moller, Haines and
Hoffman



