Computer Graphics (CS 543)
Lecture 3 (Part 1): Building 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

3D Applications

e 2D points: (x,y) coordinates
e 3D points: have (x,y,z) coordinates

Setting up 3D Applications

e Programming 3D similar to 2D
Load representation of 3D object into data structure

Each vertex has (X,y,z) coordinates.
Store as vec3, glUniform3f NOT vec?2

Draw 3D object

Set up Hidden surface removal: Correctly determine
order in which primitives (triangles, faces) are
rendered (e.g Blocked faces NOT drawn)

3D Coordinate Systems :

e Vertex (x,y,z) positions specified on coordinate system
e OpenGL uses right hand coordinate system

+z

+
N
X

— Left hand coordinate system

*Not used in OpenGL
Right hand coordinate system

Tip: sweep fingers x-y: thumb is z

Generating 3D Models: GLUT Models |

Make GLUT 3D calls in OpenGL program to generate vertices
describing different shapes (Restrictive?)

Two types of GLUT models:
e Wireframe Models
e Solid Models

[FrecatuT shapes o=]

Solid models

Wireframe models

(YY)
T
'TXX
3
3D Modeling: GLUT Models :
e Basic Shapes
e Cone: glutWireCone(), glutSolidCone()
e Sphere: glutWireSphere(), glutSolidSphere()
e Cube: glutWireCube(), glutSolidCube()
e More advanced shapes: Sphere Cone Torus

(] NGWE“ Teapot: (SymbO“C) [FTreciiT shep D

e Dodecahedron, Torus

Newell Teapot

3D Modeling: GLUT Models

e Glut functions under the hood

e generate sequence of points that define a shape
e Generated vertices and faces passed to OpenGL for rendering

e Example: glutWireCone generates sequence of vertices,
and faces defining cone and connectivity

vertices, and faces
defining cone

: OpenGL program
glutWireCone > (renders cone)

Polygonal Meshes °

e Modeling with GLUT shapes (cube, sphere, etc) too restrictive
e Difficult to approach realism. E.g. model a horse
e Preferred way is using polygonal meshes:
e Collection of polygons, or faces, that form “skin” of object
e More flexible, represents complex surfaces better
e Examples:
Human face
Animal structures
Furniture, etc

. \ W%

N\
NN
N

Each face of mesh
Is a polygon

Polygonal Mesh Example

Smoothed
Out with _~
Shading
(later)

#1= Mesh - Copie de nefertiti_wrl

File Edt OpenGL Mezh View ‘window Help

Ol=d - |%|e]| s/2]

W nefertiti wil

=10] x|

F'Eupie de nefertiti. wrl

fi

ok
Y]
RN
i
s

y

S

R
o
i

Ay

i

o

et
L

S
e
S
X
"h

ol
= e
v
LTAAN
A
ALY

e

el

S
-y
FAYAY)

A

A’

| 7
v

AN vy

NN e
e L T

| A7

et '.ﬁ‘{i’
i‘#ﬂ"

Feady

\
Mesh
(wireframe)

Polygonal Meshes

e Meshes now standard in graphics

e OpenGL

e Good at drawing polygons, triangles
e Mesh =sequence of polygons forming thin skin around object

e Simple meshes exact. (e.g barn)
e Complex meshes approximate (e.g. human face)

Meshes at Different Resolutions ot

Original: 424,000 60,000 triangles 1000 triangles
triangles (14%). (0.2%)

(courtesy of Michael Garland and Data courtesy of Iris Development.)

Representing a Mesh

e Consider a mesh

Vo

e There are 8 vertices and 12 edges

e 5interior polygons

e 6 interior (shared) edges (shown in orange)
e Each vertex has a location v; = (X; V; ;)

Simple Representation

e Define each polygon by (x,y,z) locations of its vertices
e OpenGL code

vertex|[i] = vec3(x1, vyl, zl);
vertex[i+1] = vec3(x6, y6, z6);
vertex[i+2] vec3(X7, y7, z7);
1+=3;

Issues with Simple Representation

e Declaring face f1

vertex[1i] = vec3(x1, vyi1, zl1);
vertex[i+1] = vec3(X7, y7, z7):
vertex[i+2] = vec3(x8, y8, z8);
vertex[i1+3] = vec3(x6, y6, z6);
e Declaring face 2
vertex|[i] = vec3(x1l, yi, zl);
vertex[i+1] = vec3(x2, y2, z2);
vertex[i+2] = vec3(x7, y7, z7);

e |nefficient and unstructured
o Repeats: vertices vl and v7 repeated while declaring f1 and f2
e Shared vertices shared declared multiple times
o Delete vertex? Move vertex? Search for all occurences of vertex

Geometry vs Topology

545

e Better data structures separate geometry from topolo
Geometry: (x,y,z) locations of the vertices
Topology: How vertices and edges are connected

Example:
A polygon is ordered list of vertices
An edge connecting successive pairs of vertices

Topology holds even if geometry changes (vertex movgs)

Vs o Ve
Q Vg
f -
. . Loagy
Example: even if we move (x,y,z) location of v1, N
v1still connected tov6,v7andv2 — —— ., 2
Vl'\O) f,
/ O
y Vs,
g O
V10

Polygon Traversal Convention :

e Use the right-hand rule = counter-clockwise encirclement
of outward-pointing normal

e Focus on direction of traversal
e Orders {vy, V,, V3} and {V3, V,, V,} are same (ccw)
e Order {v;, V,, V5} is different (clockwise)

Vertex Lists

e Vertex list: (x,y,z) of vertices (its geometry) are put in array

e Use pointers from vertices into vertex list

e Polygon list: vertices connected to each polygon (face)

Topology example: Polygon P1 of mesh is
connected to vertices (v1,v7,v6)

N

Pl |—— V-

P2 Vg

P3|

P4 |- > o Vg Lo .

P5 |~ > V5
v | .

v

X1Y14;
X2 Y2 25
X3 Y373
X4 Ya24
X5 Y5 Zs,
X6 Y6 Z6
X7 Y7 279

Xg Yg Zg

Geometry example:
Vertex v7 coordinates

are (x7,y7,27).
Note: If vZ moves,
changed once in vertex
list

Vertex List Issue: Shared Edges

e Vertex lists draw filled polygons correctly

e |f each polygon is drawn by its edges, shared edges are
drawn twice

e Alternatively: Can store mesh by edge list

Edge List

Simply draw each edges once
E.g el connects vl and v6

X1¥Y1Z4
X2 Y2 Z;
X3Y3 23
X4 Ya 24

X6 Y6 Zs
X7Y7Z,
Xg Yg Zg

X5 Y5 Zs,

Note polygons are
not represented

Modeling a Cube :

e In 3D, declare vertices as (x,y,z) using point3 v[3]
e Define global arrays for vertices and colors

X

y y
typedef vec3 point3; \4 \
point3 vertices[] = {point3(-1.0,-1.0,-

point3(1.0,-1.0,-1.0), point3(1.0,1.0,-1.
point3(-1.0,1.0,-1.0), point3(-1.0,-1.0,1
point3(1.0,-1.0,1.0), point3(1.0,1.0,1.0),
point3(-1.0,1.0,1.0)};

1.
1.
I g b
typedef vec3 color3; \l \
color3 colors|[] = {color3(0.0,0.0,0.0),
color3(1.0,0.0,0.0), color3(1.0,1.0,0.0),
color(0.0,1.0,0.0), color3(0.0,0.0,1.0),

color3(1.0,0.0,1.0), color3(1.0,1.0,1.0),
color3(0.0,1.0,1.0});

= o,

Drawing a triangle from list of indices

Draw a triangle from a list of indices into the array

vertices and assign a color to each index

void triangle(int a, int b, Int c, int d)

{
vcolors[i] = colors[d]; a
position[i] = vertices|[a];
vcolors[i1+1] = colors[d]);
position[i+1l] = vertices|[b];
vcolors[i1+2] = colors[d];
position[i+2] = vertices|c];
1+=3;

Variables a, b, c are indices into vertex array
Variable d is index into color array

Note: Same face, so all three vertices have same color

Normal Vector

e Normal vector: Direction each polygon is facing

e Each mesh polygon has a normal vector

e Normal vector used in shading

e Normal vector e light vector determines shading (Later)

Vi
L

normal vector
to sidewall

normal vector
to front wall

000
o000
X XX J
1t
Draw cube from faces °
id | b
\éOI colorcube() 5 .
quad(0,3,2,1);
gﬂzg %431;2% 1 ? N?rmal vector
quad(1,2,6,5); >
quad(4,5,6,7); 4
quad(0,1,5,4); !
¥
0 3

Note: vertices ordered (counterclockwise)
so that we obtain correct outward facing normals

Old Way for Storing Vertices: Inefficient

e Previously drew cube by its 6 faces using

e 6glBegin,6glEnd

6 glColor
24 glVertex

glBegin(GL_QUAD)

glVertex(x1,
glVertex(x2,
glVertex(x3,
glVertex(x4,

glEnd();

More commands if we use texture and lighting
E.g: to draw each face

, Z1);
, 22);
, 23);
, Z4);

New Way: Vertex Representation and
Storage

e We have declare vertex lists, edge lists and arrays

e But OpenGL expects meshes passed to have a specific
structure

e We now study that structure....

Vertex Arrays

e Previously: OpenGL provided a facility called vertex
arrays for storing rendering data

e Six types of arrays were supported initially
Vertices
Colors
Color indices
Normals
Texture coordinates
Edge flags

e Now vertex arrays can be used for any attributes

Vertex Attributes

(18, 34, 6)

(20, 12, 18)

(12, 6, 15)

e Vertices can have attributes
e Position (e.g 20, 12, 18)
e Color (e.g. red)
e Normal (x,y,2)
e Texture coordinates

Vertex Attributes

(18, 34, 6)

(12, 6, 15)

(20, 12, 18)

e Store vertex attributes in single Array (array of structures)

Vertex 1 Attributes

Vertex 2 Attributes

XYy

Y | Z

|

Position

Tex0

Tex1

Position

Tex0

Tex1

Declaring Array of Vertex Attributes :

e Consider the following array of vertex attributes

Vertex 1 Attributes Vertex 2 Attributes

l

i \

X|ylz|r|g|b|s |t |s |t X|ylz|r|g|b|s |t |s |t -—-=-=-=--

l | | o] | | | o]

Position Color Tex0 Tex1 Position Color Tex0 Tex1

0 1 2 3

e So we can define attribute positions (per vertex)

#define VERTEX_POS_INDEX
#define VERTEX_COLOR_INDEX
#define VERTEX_TEXCOORDO__INDX
#define VERTEX_TEXCOORD1_INDX

W N = O

Declaring Array of Vertex Attributes :

Vertex 1 Attributes Vertex 2 Attributes

X|ylz|r|g|b|s |t |s |t ||x|y|z]|r|g|lb|s|t |s|t --=-=--=

Position Color Tex0 Tex1 Position Color Tex0 Tex1

3 floats 3 floats 2 floats 2 floats

e Also define number of floats (storage) for each vertex attribute

#define VERTEX POS SIZE 3 // x, y and z
#define VERTEX COLOR_SIZE 3 // r, gand b
#define VERTEX TEXCOORDO_ SIZE 2 // s and t
#define VERTEX_ TEXCOORD1 SIZE 2 // s and t

#define VERTEX_ATTRIB_SIZE VERTEX_POS_SIZE + VERTEX COLOR_SIZE + \

VERTEX_TEXCOORDO_SIZE + \
VERTEX_TEXCOORD1_SIZE

Declaring Array of Vertex Attributes

Vertex 1 Attributes Vertex 2 Attributes

l | \
X|ylz|r|g|b|s|t|s|t |/x|yl|z|r|g|b|s|t|s|t --=-=---
l | |1 | |1] ||] |] |] |] | |
Position Color Tex0 Tex1 Position Color Tex0 Tex1
O(floats

3 floats

6 floats
< >
8 floats
< >

e Define offsets (# of floats) of each vertex attribute from beginning

#define VERTEX_POS_OFFSET
#define VERTEX_COLOR_OFFSET
#define VERTEX_TEXCOORDO OFFSET
#define VERTEX_TEXCOORD1 OFFSET

o o W o

000
0000
o000
00
o0
[} [] .
Allocating Array of Vertex Attributes
Vertex 1 Attributes Vertex 2 Attributes
l I \
X|ylz|r|g|b|s|t|s|t |/x|yl|z|r|g|b|s|t|s|t -=--=---
l | |] L L_J | | | A I B U
Position Color Tex0 Tex1 Position Color Tex0 Tex1
_ . Recall
e Allocate memory for entire array of vertex attributes /

#define VERTEX _ATTRIB_SIZE VERTEX_POS_SIZE + VERTEX COLOR_SIZE + \

VERTEX_TEXCOORDO SIZE + \
VERTEX_TEXCOORD1_SIZE

float *p = malloc(nhumVertices * VERTEX ATTRIB_SIZE * sizeof(float));

Allocate memory for all vertices

Specifying Array of Vertex Attributes

Vertex 1 Attributes

Vertex 2 Attributes

i

X |y

Z |r | g

S |t

S

t

X

y

z

r

g

|

l

|

l

|

l

Position Color

Tex0

Tex1

Position

Color

Tex0 Tex1

e glVertexAttribPointer used to specify vertex attributes

e Example: to specify vertex position attribute

Position 0

glVertexAttribPointer(VERTEX POS_INDX, VERTEX POS SIZE,

Data is floats /

3 floats (x, vy, z)

Data should not

GL FLOAT, GL FALSE,«—— Be normalized

VERTEX_ATTRIB_SIZE * sizeof(float), p);

glEnableVertexAttribArray(0);

e do same for normal, texO and texl

Stride: distance between \
consecutive vertices Pointer
to data

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 3

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

