Computer Graphics (CS 543)
Lecture 12 (Part 3): Rasterization: Line Drawing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Rasterization

- Rasterization (scan conversion)
 - Determine which pixels inside each primitive
 - Produces a set of fragments
 - Fragments have a location (pixel location) and other attributes such as color and texture coordinates that are determined by interpolating values at vertices

Rasterization: Determine Pixels (fragments) each primitive covers
Rasterization

- Implemented by graphics hardware
- Rasterization algorithms
 - Lines
 - Circles
 - Triangles
 - Polygons
Line drawing algorithm

- Programmer specifies \((x,y)\) of end pixels
- Need algorithm to determine intermediate pixels on line path

\[
\begin{array}{ccccccccccccc}
8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

Line: \((3,2) \) -> \((9,6) \)

Which intermediate pixels to turn on?
Line drawing algorithm

- Pixel (x,y) values constrained to integer values
- Actual computed intermediate line values may be floats
- Rounding may be required. E.g. computed point (10.48, 20.51) rounded to (10, 21)
- Rounded pixel value is off actual line path (jaggy!!)
- Sloped lines end up having jaggies
- Vertical, horizontal lines, no jaggies
Line Drawing Algorithm

- Slope-intercept line equation
 - $y = mx + b$
 - Given two end points $(x_0,y_0), (x_1, y_1)$, how to compute m and b?

$$m = \frac{dy}{dx} = \frac{y_1 - y_0}{x_1 - x_0} \quad y_0 = m \cdot x_0 + b \implies b = y_0 - m \cdot x_0$$
Line Drawing Algorithm

- Numerical example of finding slope m:
 - $(Ax, Ay) = (23, 41), (Bx, By) = (125, 96)$

\[
m = \frac{By - Ay}{Bx - Ax} = \frac{96 - 41}{125 - 23} = \frac{55}{102} = 0.5392
\]
Digital Differential Analyzer (DDA): Line Drawing Algorithm

Consider slope of line, m:

- Step through line, starting at \((x_0, y_0)\)
- **Case a: \((m < 1)\)** x incrementing faster
 - Step in \(x=1\) increments, compute \(y\) (a fraction) and round
- **Case b: \((m > 1)\)** y incrementing faster
 - Step in \(y=1\) increments, compute \(x\) (a fraction) and round
DDA Line Drawing Algorithm (Case a: \(m < 1 \))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{y_{k+1} - y_k}{1}
\]

\[
\Rightarrow y_{k+1} = y_k + m
\]

Example, if first end point is \((0,0)\)
Example, if \(m = 0.2\)
Step 1: \(x = 1, y = 0.2\) => shade \((1,0)\)
Step 2: \(x = 2, y = 0.4\) => shade \((2, 0)\)
Step 3: \(x = 3, y = 0.6\) => shade \((3, 1)\)
... etc
DDA Line Drawing Algorithm (Case b: \(m > 1 \))

\[
m = \frac{\Delta y}{\Delta x} = \frac{y_{k+1} - y_k}{x_{k+1} - x_k} = \frac{1}{x_{k+1} - x_k}
\]

\[
\Rightarrow x_{k+1} = x_k + \frac{1}{m}
\]

Example, if first end point is \((0,0)\)

if \(1/m = 0.2\)

Step 1: \(y = 1, x = 0.2 \Rightarrow \text{shade}\ (0,1)\)

Step 2: \(y = 2, x = 0.4 \Rightarrow \text{shade}\ (0, 2)\)

Step 3: \(y= 3, x = 0.6 \Rightarrow \text{shade}\ (1, 3)\)

... etc

\[\text{Illuminate pixel (round}(x), y)\]

\[y = y + 1\]

\[x = x + 1 / m\]

\[\text{Illuminate pixel (round}(x), y)\]

\[y = y + 1\]

\[x = x + 1 / m\]

... etc

\[\text{Until } y == y1\]
DDA Line Drawing Algorithm Pseudocode

```
compute m;
if m < 1:
{
    float y = y0;     // initial value
    for(int x = x0;  x <= x1;  x++, y += m)
        setPixel(x, round(y));
}
else   // m > 1
{
    float x = x0;       // initial value
    for(int y = y0;  y <= y1;  y++, x += 1/m)
        setPixel(round(x), y);
}
```

- **Note:** `setPixel(x, y)` writes current color into pixel in column `x` and row `y` in frame buffer
Line Drawing Algorithm Drawbacks

- DDA is the simplest line drawing algorithm
 - Not very efficient
 - Round operation is expensive
- Optimized algorithms typically used.
 - Integer DDA
 - E.g. Bresenham algorithm
- Bresenham algorithm
 - Incremental algorithm: current value uses previous value
 - Integers only: avoid floating point arithmetic
 - Several versions of algorithm: we’ll describe midpoint version of algorithm
Bresenham’s Line-Drawing Algorithm

- Problem: Given endpoints \((Ax, Ay)\) and \((Bx, By)\) of a line, want to determine best sequence of intervening pixels
- First make two simplifying assumptions (remove later):
 - \((Ax < Bx)\) and
 - \((0 < m < 1)\)
- Define
 - Width \(W = Bx – Ax\)
 - Height \(H = By - Ay\)
Bresenham’s Line-Drawing Algorithm

- Based on assumptions:
 - W, H are +ve
 - H < W
- As x steps in +1 increments, y incr by 1 or stays same
- Midpoint algorithm determines which happens
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x_0 + 1, y_0 + \frac{1}{2}) \)

Build equation of actual line, compare to midpoint

Case a: If midpoint (red dot) is below line, Shade upper pixel, \((x + 1, y + 1)\)

Case b: If midpoint (red dot) is above line, Shade lower pixel, \((x + 1, y)\)
Bresenham’s Line-Drawing Algorithm

What Next?

Need to build equation of actual line, Then build test to determine if midpoint is above or below actual line (i.e case a or case b)

Case a: If midpoint (red dot) is below line,

Case b: If midpoint (red dot) is above line,
Build Equation of the Line

● Using similar triangles:

\[
\frac{y - Ay}{x - Ax} = \frac{H}{W}
\]

\[H(x - Ax) = W(y - Ay)\]

\[-W(y - Ay) + H(x - Ax) = 0\]

● Above is equation of line from \((Ax, Ay)\) to \((Bx, By)\)

● Thus, any point \((x, y)\) that lies on ideal line makes eqn = 0

● Double expression (to avoid floats later), and call it \(F(x, y)\)

\[F(x, y) = -2W(y - Ay) + 2H(x - Ax)\]
Bresenham’s Line-Drawing Algorithm

- So, \(F(x,y) = -2W(y - Ay) + 2H(x - Ax) \)

- Algorithm, If:
 - \(F(x, y) < 0 \), \((x, y)\) above line
 - \(F(x, y) > 0 \), \((x, y)\) below line

- **Hint:** \(F(x, y) = 0 \) is on line
- Increase \(y \) keeping \(x \) constant, \(F(x, y) \) becomes more negative
Bresenham’s Line-Drawing Algorithm

- **Example:** to find line segment between (3, 7) and (9, 11)

 \[F(x,y) = -2W(y - Ay) + 2H(x - Ax) \]
 \[= (-12)(y - 7) + (8)(x - 3) \]

- For points on line. E.g. (7, 29/3), \(F(x, y) = 0 \)
- \(A = (4, 4) \) lies below line since \(F = 44 \)
- \(B = (5, 9) \) lies above line since \(F = -8 \)
Bresenham’s Line-Drawing Algorithm

What Pixels to turn on or off?

Consider pixel midpoint \(M(M_x, M_y) = (x_0 + 1, y_0 + \frac{1}{2}) \)

Case a: If \(M \) below actual line
\(F(M_x, M_y) > 0 \)
shade upper pixel \((x + 1, y + 1)\)

Case b: If \(M \) above actual line
\(F(M_x, M_y) < 0 \)
shade lower pixel \((x + 1, y + 1)\)
Can compute $F(x, y)$ incrementally

Initially, midpoint $M = (Ax + 1, Ay + \frac{1}{2})$

$$F(Mx, My) = -2W(y - Ay) + 2H(x - Ax)$$

i.e. $F(Ax + 1, Ay + \frac{1}{2}) = 2H - W$

Can compute $F(x, y)$ for next midpoint incrementally

If we increment to $(x + 1, y)$, compute new $F(Mx, My)$

$$F(Mx, My) += 2H$$

i.e. $F(Ax + 2, Ay + \frac{1}{2})$

$$- F(Ax + 1, Ay + \frac{1}{2})$$

$$= 2H$$
Can compute $F(x,y)$ incrementally

If we increment to $(x+1, y+1)$

$$F(Mx, My) \leftarrow 2(H - W)$$

i.e. $F(Ax + 2, Ay + 3/2) - F(Ax + 1, Ay + \frac{1}{2}) = 2(H - W)$
Bresenham’s Line-Drawing Algorithm

Bresenham(IntPoint a, IntPoint b)
{
 // restriction: a.x < b.x and 0 < H/W < 1
 int y = a.y, W = b.x - a.x, H = b.y - a.y;
 int F = 2 * H - W; // current error term
 for(int x = a.x; x <= b.x; x++)
 {
 setpixel at (x, y); // to desired color value
 if(F < 0) // y stays same
 F = F + 2H;
 else{
 Y++, F = F + 2(H - W) // increment y
 }
 }
}

- Recall: F is equation of line
Bresenham’s Line-Drawing Algorithm

- Final words: we developed algorithm with restrictions
 \[0 < m < 1 \text{ and } Ax < Bx\]

- Can add code to remove restrictions
 - When \(Ax > Bx\) (swap and draw)
 - Lines having \(m > 1\) (interchange \(x\) with \(y\))
 - Lines with \(m < 0\) (step \(x++\), decrement \(y\) not incr)
 - Horizontal and vertical lines (pretest \(a.x = b.x\) and skip tests)
References