Computer Graphics (CS 543)
Lecture 12 (Part 2): Viewport
Transformation, Hidden Surface
Removal and Rasterization

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Viewport Transformation

e After clipping, do viewport transformation

projection

maﬂrg _________
F=————==== /— 1 |
I I I I l/—_'_—'_ |I
| || | | [|
—»{ VM > P oy clip m Ve = ||
TN e
I I I I \ ______J
| I |'I |
I \ | | . \'I . I |
I modelview . \-u'lw[‘}p?l I
I matrix | matrix !
- Vo !
User implements in Manufacturer
Vertex shader Implements

In hardware

Viewport Transformation

e Command to set viewport: glViewport(x,y, wid, ht)
e x,v, wid, ht in screen coordinates (pixels)

e Viewport transformation shifts x, y to screen (x, y)
coordinates

AY Screen
coordinates

Ay /

o0 |:> height
A\ /1 x
-1

Canonical width X

View volume

Viewport Transformation

e Also maps z values (pseudo-depth) from range [-1,1]
to [0,1]

e Pseudo-depth stored in depth buffer, used for Depth
testing (Hidden Surface Removal)

Hidden surface Removal e

e Drawing polygonal faces on screen consumes CPU cycles
e We cannot see every surface in scene

e To save time, draw only surfaces we see

e Surfaces we cannot see and elimination methods:

e Occluded surfaces: hidden surface removal (visibility)
e Back faces: back face culling

e Faces outside view volume: viewing frustrum culling

e Classification of techniques:
o Object space techniques: applied before rasterization

e Image space techniques: applied after vertices have been
rasterized

Visibility (hidden surface removal)

e Correct visibility — when multiple opaque polygons
cover the same screen space, only the closest one is
visible (remove the other hidden surfaces)

wrong visibility Correct visibility

Image Space Approach

e Through each pixel, (nm for an h X m frame buffer)
find closest of kK polygons

e Complexity O(nmk)
e Ray tracing
e z-buffer : OpenGL

/77777
(77777

COP

(/S
[/ LSS

OpenGL - Image Space Approach

" Paint pixel with color of closest object

for (each pixel in image) {
determine the object closest to the pixel
draw the pixel using the object’s color

¥

Image Space Approach — Z-buffer :

e Z-buffer (or depth buffer) algorithm: Method used in
most of graphics hardware (and OpenGL):

e Requires lots of memory

e Recall: during viewport transformation
e X,y mapped to screen coordinates, used to draw screen
e z component mapped to range [0,1]
e Larger z values: Further away from viewer

e Hence, we know depth z at polygon vertices

e During rasterization, object depth between vertices
interpolated so we know depth at all pixels

Z-buffer Algorithm

e Basic Z-buffer idea:
rasterize every input polygon

For every pixel in polygon interior, calculate its
corresponding z value (by interpolation)

Track depth values of closest polygon (smallest z) so far

Paint the pixel with the color of the polygon whose z
value is the closest to the eye.

N

/

Find depth (z) of every
polygon at each pixel

Z (depth) buffer algorithm

e Note: eye atz =0, farther objects have larger
values of z (between 0 and 1)
Initialize (clear) every pixel in the z buffer to 1.0
Track polygon 7’s.

As we rasterize polygons, check to see if
polygon’s z through this pixel is less than current
minimum z through this pixel

Run the following loop:

Z (depth) Buffer Algorithm

Depth of polygon being Largest depth seen so far
rasterized at pixel (X, y) Through pixel (X, y)

For each polygon {

for each pixel (x,y) inside the polygon projection area {

v
If (z_polygon_pixel(x,y) < depth_buffer(x,y)) {

depth_buffer(x,y) = z_polygon_pixel(x,y);

color_buffer(x,y) = polygon color at (X,y)

}
}
¥

Note: know depths at vertices. Interpolate for interior
z_polygon_pixel(x, y) depths

Z buffer lllustration

Correct Final image

0.5

| 2=0.3

eye

Top View

Z buffer lllustration

Step 1: Initialize the depth buffer

1.0 | 1.0 1.0 | 1.0
1.0} 10| 10| 1.0
1.0| 10| 10| 1.0
1.0| 10| 10| 1.0

Z buffer lllustration °

Step 2: Draw the blue polygon (assuming the OpenGL
program draws blue polyon first — the order does
not affect the final result any way).

10| 10| 10| 10 ——— ;-3
10| 10| 10| 1.0 T

1.0 | 1.0 \

1.0 | 1.0

Z buffer lllustration

Step 3: Draw the yellow polygon

1.0

1.0

1.0

1.0

0.3

1.0

0.3

1.0

1.0

1.0

eye

z-buffer drawback: wastes resources by rendering a face and then

drawing over it

Z-Buffer Depth Compression

e Pseudodepth calculation: Recall that we chose

parameters (a and b) to map z from range [near, far]
to pseudodepth range[-1,1]

2N

X max— xmin
0

0
0

0 right + left
right — left
2N top + bottom 0
top —bottom tpp —hottom
0 —(F+N)| | —2FN
F-N F-N
0

These values map z values of original

view volume to [-1, 1] range

i

N < X

Z-Buffer Depth Compression

e This mapping is almost linear close to eye
e Non-linear further from eye, approaches asymptote
e Also limited number of bits

e Thus, two z values close to far plane may map to
same pseudodepth: Errors!!

q=—FN

s F—N
Mapped z aP7+b b 2FN
Pz ~ F-N
1
N
I | » Actual z
F Pz

-1

OpenGL HSR Commands

° 3 main commands to do HSR

e glutinitDisplayMode(GLUT DEPTH | GLUT_RGB)
instructs openGL to create depth buffer

e (lEnable(GL DEPTH TEST) enables depth testing

e (glClear(GL _COLOR_BUFFER_BIT |
GL DEPTH BUFFER BIT) initializes depth buffer every
time we draw a new picture

Painter’s HSR Algorithm

e Render polygons in back to front order so that
polygons behind others are simply painted over

na

B behind A as seen by viewer Fill B then A

Depth Sort

e Requires sorting of polygons (based on depth) first
O(n log n) calculation to sort polygon depths

Not every polygon is clearly in front or behind all other

polygons
A

T -

e Order polygons and deal with

Zmax

i I szin
Polygons sorted by £ E p

distance from COP Palygons -

easy cases first, harder later

Distance from COP

Easy Cases

e A lies behind all other polygons

Can render

Distance from COP

Y

Polygons

e Polygons overlap in z but not in either x ory
Can render independently

Hard Cases

i

7
/)

cyclic overlap

Overlap in both (x,y) and
Z ranges

penetration

Back Face Culling

e Back faces: faces of opaque object that are
“pointing away” from viewer

e Back face culling: remove back faces (supported
by OpenGL)

— &
ack face -

e How to detect back faces?

Back Face Culling

e If we find backface, do not draw, save rendering resources
e There must be other forward face(s) closer to eye

e Fisface of object we want to test if backface

e PisapointonF

e Form view vector, V as (eye — P)

e NisnormaltofaceF

o . &

V

Backface test: F is backface if N.V < O why??

Back Face Culling: Draw mesh front faces| @

void drawFrontFaces()

{

for(int f = 0;f < numFaces; f++)

{

if(isBackFace(f,) continue;
gIDrawArrays(GL_POLYGON, 0, N);

Note: In OpenGL we can simply enable culling but
may not work correctly if we have nonconvex objects

View-Frustum Culling

Remove objects that are outside view frustum
Done by 3D clipping algorithm (e.g. Liang-Barsky)

Ray Tracing

e Ray tracing is another image space method

e Ray tracing: Cast a ray from eye through each
pixel to the world.

e Question: what does eye see in direction looking
through a given pixel?

N
N

N
A\

=

>

A

N

/
N\
<

-

><

VAV

P 4

More on this topic later

Scan-Line Algorithm

e Can combine shading and hsr through scan line
algorithm

scan line i: no need for depth
Information, can only be in no
or one polygon

scan line J: need depth
iInformation only when in
more than one polygon

Combined z-buffer and
Gouraud Shading (Hill)

for(int y = ybott; y <= ytop; y++) // for each scan line

{

for(each polygon){
find xleft and xright
find dleft, dright, and dinc
find colorleft and colorright, and colorinc
for(int x = xleft, c = colorleft, d = dleft; x <= xright;
X++, c+= colorinc, d+= dinc)
l{f(d < d[x]ly]) ytop
put c into the pixel at (x, y) y4
d[x][y] = d; // update closest depth
1 yS
ybott

color3

color

color2

colorl

Xleft

xright

v

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Chapter 9

