Computer Graphics (CS 543
Lecture 12 (Part 1): 3D Clippin

000
Prof Emmanuel Agu | eee@e®
00O
00
Computer Science Dept. Y)
Worcester Polytechnic Institute (WPI) O

Liang-Barsky 3D Clipping

Want to clip edge-by-edge of an object against CVV

Now describe a version embellished by Jim Blinn
Problem:

Two points, A = (Ax, Ay, Az, Aw) and C = (Cx, Cy, Cz, Cw), in homogeneous
coordinates

If segment intersects with CVV, need to compute intersection point I-
=(Ix,ly,1z,lw)

y b)

CVV Y~ a3

eoo
o0
o
Determining if point is inside CVV
Determine whether a point
y=1 (x,y,2) is inside or outside CVV?
®
® Point (x,y,z) is inside CVV
¢ if (-1 <= x <= 1)
y=-1 and (-1 <=y<=1)
and (-1<=z<=1)
X =-1 xX=1

else the point is outside CVV

CVV == 6 infinite planes (x=-1,1; y=-1,1; z=-1,1)

Determining if point is inside CVV

What if point is in homogeneous
coordinates?

Point specified as (x,y,z,w)
- Use scaled version of x,y,z!

Point (x/w, y/w, z/w) is inside CVV

yw =1
o
o
o
y/w= -1
xw = -1

_ if (-l<=x/w<=1)
Y= 4 and (-1 <=y/w<=1)
and (-1 <=1z/w<=1)

else the point is outside CVV

Determining if point is inside CVV

yw =1

Consider plane x = 1, point A =
(Ax,Ay,Az,Aw) is inside if

y/w= -1

Ax/Aw < 1
=> Aw —-Ax>0
or w—x>0

x/w = -1

Point A = (Ax,Ay,Az,Aw) plane x
x/w=1 — -1 if

Ax/Aw > -1
=> Aw + Ax>0
or w+x>0

Determining if point is inside CVV

So, point is
iInside (right of) plane x=-1 if w+x >0
iInside (left of) plane x=1 ifw—-x>0

-1 1

Point (0.5, 0.2, 0.7) inside planes (x =-1,1) because - 1<=05<=1

If scaled by w =10, (0.5,0.2,0.7) = (5, 2,7, 10)

Use scaled version, point is inside because — 1 <=5/10<=1
Totestifinsidex=-1, w+x= 10+5=15 >0
Totestifinsidex= 1, w- x= 10 -5=5 >0

3D Clipping

Notation (Aw +Ax) = w + X, boundary coordinates for 6 planes as:

Boundary Homogenous | Clip plane | Example
coordinate (BC) coordinate (5,2,7,10)
BCO wW—+X X=-1 15

BC1 W-X x=1 5

BC2 w+y =-1 12

BC3 wW-y y=1 8

BC4 W—+z z=-1 17

BC5 wW-Z z=1 3

*Trivial accept: 12 BCs (6 for pt. A, 6 for pt. C) are positive

*Trivial reject: Both endpoints outside of same plane

Edges as Parametric Equations

e Implicit form F(x,y)=0

e Parametric forms:
points specified based on single parameter value
Typical parameter: time t

P(t) = P, + (P — P,)*t 0<t<1

e Some algorithms work in parametric form
Clipping: exclude line segment ranges
Animation: Interpolate between endpoints by varying t

e Represent each edge parametrically as A + (C— A)t
e Intepretation: a point is traveling such that:

at time t=0, point at A

at time t=1, point at C

Inside/outside?

Test against 6 walls

If BCs have opposite signs = edge hits plane at time t_hit

l.e. If pt. Ais outside, C is inside

Define: “entering” = as t increases, outside to inside

Define “leaving”: as t increases, inside to outside (A inside, C

outside)

: C
t_in / t out
A / - /

/A

Calculating hit time (t_hit) °

How to calculate t_hit?
Represent an edge t as:
Edge(t) = ((Ax+ (Cx — Ax)t, (Ay + (Cy — Ay)t, (Az + (Cz — A2)t, (Aw + (Cw — Aw)t)

E.g.lfx=1, Ax+ (Cx — Ax)t 1
Aw + (Cw— Aw)t

Solving for t above,

. Aw — AX
(Aw— Ax) — (Cw—Cx)

Candidate Interval

If not trivial accept/reject, then clip

Define Candidate Interval (Cl) as time interval during which
edge might still be inside CVV.i.e.Cl =t _intot_out

Initialize ClI to [0,1]

For each of 6 planes, calculate t_in ort_out, shrink CI

0 Cl 1
I — Tt

t in t out

Conversely: values of t outside CI = edge is outside CVV

Shortening Candidate Interval

Algorithm:
Test for trivial accept/reject (stop if either occurs)
Set Cl to [0,1]
For each of 6 planes:
Find hit time t_hit
Ift_in, new t_in = max(t_in,t_hit)
If t out, new t_out = min(t_out, t_hit)

If t_In >t _out => exit (no valid intersections)

Note: seeking smallest valid Cl without t_in crossing t _out

Shortening Candidate Interval

Example to illustrate search for t_in, t out

Note: CVV is a cube (different shape). This is just an example

@,z
@()
.’; -
/./--"'/ -_- -,._ . _____'_.__'i.---""--.----------- -"1 [‘i ne test
Ly £l -/ L 0
“\\\’ s e / ;
| @.28 | |
(a 1 ,_,-:';'/—_‘ ’// \ I'I IHIUI\ULI\ l'i.\|
e / \ @-4.7
— C i @.66 ' “ 7
4

@.83 3
VRl I .
intersects L, = ——u. 7~ 5

@3.4

"nul

0.83

0.66

0.66

0.66

0.66

0.66

Calculate choppped A and C

e Ifvalidt in, t out, calculate adjusted edge endpoints A, C as

e A chop=A+t_in(C—-A) (calculate for Ax,Ay, Az)
e C chop=A+t out(C—A) (calculate for Cx,Cy,Cz)

0 Cl 1
I — Tt

t in t out

| \

Use to calculate A _chop Use to calculate C_chop

3D Clipping Implementation °

e Function clipEdge()
e Input: two points A and C (in homogenous coordinates)
e Output:
e 0, if no part of line AC lies in CVV
e 1, otherwise
e Also returns clipped A and C
e Store 6 BCs for A, 6 for C

Store BCs as Outcodes

e Use outcodes to track in/out
Number wallsx=+1,-1;y=+1,-1,andz=+1,-1as0..5
Bit i of A’s outcode = 1 if A is outside ith wall
1 otherwise

e Example: outcode for point outside walls 1, 2, 5

Wall no. 0] 1 2 3 4 5
OutCode |0 1 1 0] 0 1

Trivial Accept/Reject using Outcodes

e Trivial accept: inside (not outside) all walls

wall no. |© 1 2 3 4 o
A Outcode | O 0] 0] O 0 0]

C OutCode |0 0 0] 0] 0] 0

Logical bitwise test: A | C ==

e Trivial reject: point outside same wall. Example Both A and C outside wall 1

wall no. |© 1 2 3 4 S
A Outcode | O 1 0] 0] 1 0

C OutCode |0 1 1 0] 0] 0

Logical bitwise test: A&C!'=0

3D Clipping Implementation

e Compute BCs for A,C store as outcodes
e Test A, C outcodes for trivial accept, trivial reject
e |f not trivial accept/reject, for each wall:
Compute tHit
Update t_in, t out
If t_in >t _out, early exit

3D Clipping Pseudocode

int clipEdge(Point4& A, Point4& ()

{
double tin = 0.0, tOut = 1.0, tHit;

double aBC[6], cBC[6];
int aOutcode = 0, cOutcode = 0;

..... find BCs for Aand C
..... form outcodes for A and C

if((aOutCode & cOutcode) !=0) // trivial reject
return O;

if((aOutCode | cOutcode) == 0) // trivial accept
return 1;

3D Clipping Pseudocode

for(i=0;i<6;i++) // clip against each plane
{
if(cBC[i] < 0) // Cis outside wall i (exit so tOut)
{
tHit = aBC[i]/(aBC[i] — cBC[l]); // calculate tHit
tOut = MIN(tOut, tHit);

}
else if(aBC[i] < 0) // A is outside wall | (enters so tIn)

{
tHit = aBC[i]/(aBC[i] — cBC[i]); // calculate tHit
tin = MAX(tln, tHit);

}
if(tIn > tOut) return 0; // Cl is empty: early out

3D Clipping Pseudocode

Point4 tmp; // stores homogeneous coordinates
If(aOutcode !=0) // A is outside: tIn has changed. Calculate A_chop
{

tmp.x = A.x +tIn * (C.x = A.x);

// do same fory, z, and w components

}
If(cOutcode !=0) // Cis outside: tOut has changed. Calculate C_chop

{
C.x = A.x + tOut * (C.x — A.x);

// do same for y, zand w components

}

A =tmp;

Return 1; // some of the edges lie inside CVV
}

Polygon Clipping

e Not as simple as line segment clipping

Clipping a line segment yields at most one line
segment

Clipping a polygon can yield multiple polygons

A /X
ZL L

e However, clipping a convex polygon can yield at
most one other polygon

22

Clipping Polygons °

e Need more sophisticated algorithms to handle
polygons:

o Sutherland-Hodgman: any a given polygon against a
convex clip polygon (or window)

o Weiler-Atherton: Both subject polygon and clip
polygon can be concave

Tessellation and Convexity o

One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

Also makes fill easier

24

References

e Angel and Shreiner, Interactive Computer Graphics,
6th edition

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

