Computer Graphics (CS 543)
Lecture 10 (Part 1): Shadows and Fog

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Shadows

Basic idea:

Introduction to Shadows

Introduction to Shadows

e Shadows make image more realistic

e Important visual cues on relative positions of objects
e Lighting calculations for rendering shadows:

e Points in shadow: only ambient component

e Points NOT in shadow: ambient + diffuse + specular

Use ambient +
diffuse + specular
components

Use just ambient
component

Introduction to Shadows

e Simple illumination models == simple shadows

e Two popular shadow rendering methods:
Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing (covered in grad
class)

Projective Shadows

e Oldest methods: Used in early flight simulators

e Projection of a polygon is a polygon called a shadow
polygon

(x1. ¥ z1)

Actual polygon

- x_—~ Shadow polygon

Projective Shadows

e Given a point light and a polygon, vertices of the
shadow polygon (V') are projections of original
polygon’s vertices (V) from light source onto a surface

Projective Shadows

e Works for flat surfaces illuminated by point light
e Problem: compute shape of shadow
e For each face, project vertices, draw shadow polygon

e Shadow of entire object = union of projections of
individual faces

Projective Shadow Algorithm

e Project light-object edges onto plane
e Algorithm:

First, draw ground plane using specular-diffuse-ambient
components

Then, draw shadow projections (face by face) using only
ambient component

Projective Shadows for Polygon

1. Source at (x, v, 2|
2. Vertexat(x,vy, z)

3. Would like to calculate shadow polygon vertex V projected
onto ground at (x,, 0, z,)

(x1. yi. z)

<

(X.y.2)

> X
(X5,0,2,)

Ground plane:y =0

Projective Shadows for Polygon

e |f we move original polygon so that light source is at origin

e Matrix M projects a vertex V to give y
A

its projection V' in shadow polygon

<

Il
o o o
ro m o
o O O
O O o o

|
<

Building Shadow Projection Matrix

1. Translate source to origin with T(-x,, -y, -z,)
2. Perspective projection
3. Translate back by T(x, y,, z))

100 x]t % % %100 —x

M201Oy,8(1)(1)8010—y,

0 0 1 gz 1 0 0 1 -z

_0001_0W00_0001_
u | _

\ Final matrix that projects

Vertex V onto V'’ in shadow polygon

Code snippets?

e Set up projection matrix in OpenGL application

float light[3]; 7/ location of light
mat4 m; // shadow projection matrix initially i1dentity

M[3][1] = -1.0/1ight[1];

o O O

<

Il
o O O K
O o o o

Projective Shadow Code

e Set up object (e.g a square) to be drawn

point4 square[4] = {vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}
{vec4(-0.5, 0.5, -0.5, 1.0}

e Set up VBO, copy square to VBO

e Set up modelview, projection matrices, pass to
vertex shader

What next?

e Next, we load model_view as usual then draw
original polygon

e Then load shadow projection matrix, change color to
black, re-render polygon

(X1, y1, z1)

>

1. Load modelview
draw polygon as usual

\ = x 2. Modify modelview with
Shadow projection matrix
Re-render as black (or ambient)

Shadow projection Display() Function | ¢

void display()
{
mat4 mm;
// clear the window
glClear(GL_COLOR _BUFFER _BIT | GL DEPTH BUFFER_BIT);

// render red square (original square) using modelview
// matrix as usual (previously set up)
gluniformdafv(color_loc, 1, red);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);

Shadow projection Display() Function

// modify modelview matrix to project square
// and send modified model view matrix to shader
mm = model view

* Translate(light[0], light[1l], light[2]

*m

* Translate(-light[0], -light[1], -light[2]);
gluniformMatrix4fv(matrix_loc, 1, GL_TRUE, mm);

//and re-render square as

// black square (or using only ambient component)
gluniformdafv(color_loc, 1, black);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glutSwapBuffers();

Shadow Buffer Approach

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces

e Cons: needs lots of memory
e Depth buffer?

OpenGL Depth Buffer (Z Buffer) :

e Depth: While drawing objects, depth buffer stores
distance of each polygon from viewer

e Why? If multiple polygons overlap a pixel, only
closest one polygon is drawn
Depth

1 Z:0.5‘4

10 | 1.0] 1.0 | 1.0 | o
10 |03 | 03] 1.0 T

“ | 1.0 ‘
: 1.0 eye

Setting up OpenGL Depth Buffer :

Note: You did this in order to draw solid cube, meshes

glutinitDisplayMode(GLUT_DEPTH | GLUT _RGB)
instructs openGL to create depth buffer

glEnable(GL DEPTH TEST) enables depth testing

glClear(GL_COLOR BUFFER BIT |
GL_DEPTH_BUFFER BIT)

Initializes depth buffer every time we draw a new picture

Shadow Buffer Approach

e Theory:
Establish object-light path
Other objects in object-light path = object in
shadow
Otherwise, not in shadow

Shadow Buffer Approach

e Shadow buffer records object distances from light
source

e Shadow buffer element = distance of closest object
in a direction

source shadow

. / buffer
/ b ,screen and
i

e y, .
/ /depth buffer

Shadow Buffer Approach

e Rendering in two stages:
e Loading shadow buffer
e Render the scene

Loading Shadow Buffer

e Initialize each elementto 1.0
e Position a camera at light source

e Rasterize each face in scene updating pseudo-depth

e Shadow buffer tracks smallest pseudo-depth so far

source shadow
y buffer
i B
. // R
L /: \ I

,screen and
/ depth buffer

-

Loading Shadow Buffer -

e Shadow buffer calculation is independent of eye
position

e |In animations, shadow buffer loaded once

e If eye moves, no need for recalculation

e If objects move, recalculation required

SOUTCE shadow
/{ buffer
") o
r/ vd B <, ,screen and
|~ A / depth buffer

Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer
e If d[i][j] < D (other object on this path closer to light)
point P is in shadow
set lighting using only ambient

e Otherwise, not in shadow

Other Issues

e Point light sources => simple but a little unrealistic
e Extended light sources => more realistic
e Shadow has two parts:

e Umbra (Inner part) => no light

e Penumbra (outer part) => some light

Fog

e Fog was part of OpenGL fixed function pipeline

e Using shaders, fog applied to scene just before
display
e Shaders can generate more elaborate fog
e Fog is atmospheric effect
A little better realism
Help in determining distances

Fog example °

e Often just a matter of
e Choosing fog color
e Choosing fog model
e Turningiton

Rendering Fog

e Color of fog: C; color of surface: Cq
c, = fc, +(1—f)c, fe[0]]

e How to compute f ?
e 3 ways: linear, exponential, exponential-squared
e Linear:

Zend - Zstart

Fog Shader Fragment Shader Example

float dist = abs(Position.z);

Float fogFactor = (Fog.maxDist — dist)/
Fog.maxDist — Fog.minDist);

fogFactor = clamp(fogFactor, 0.0, 1.0);

vec3 shadeColor = ambient + diffuse + specular
vec3 color = mix(Fog.color, shadeColor,fogFactor);
FragColor = vec4(color, 1.0);

Fog

e Exponential T =€
e Squared exponential

—d;z

p

F (@)

e Exponential derived from Beer’s law

e Beer’s law: intensity of outgoing light diminishes

exponentially with distance

 e——

fog factor equations

0.6

04

surface color amount

0.2

0.8 “* | ! 20.33
/h/x /expexp'z 0.66

)

= 3
relative distance

Fog T

e fvalues for different depths can be pre-computed
and stored in a table on GPU

e Distances used in f calculations are planar

e Can also use Euclidean distance from viewer or radial
distance to create radial fog

viewer viewer viewer

References

e Interactive Computer Graphics (6t edition), Angel
and Shreiner

e Computer Graphics using OpenGL (3™ edition), Hill
and Kelley

e Real Time Rendering by Akenine-Moller, Haines and
Hoffman

