Computer Graphics (CS 543)
Lecture 7 (Part 3): Hierarchical 3D Models

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Instance Transformation o

e Start with unique object (a symbol)
e Each appearance of object in model is an instance

e Must scale, orient, position
e Defines instance transformation

Instance
Symbol

Symbol-Instance Table

Can store a model by assigning number to each
symbol and storing parameters for instance
transformation

Symbol Scale Rotate Translate

Se0 8,5, |90,,6,86 dx,dy,dz

. J— —] CAJ M R

Relationships in Car Model

e Symbol-instance table does not show
relationships between parts of model
e Consider model of car
Chassis (body) + 4 identical wheels
Two symbols

e Relationship: Rate of forward motion determined
by rotational speed of wheels

Structure using Function Calls

car(speed)

1

chassis()

wheel (right_front);
wheel (left _front);
wheel (right rear);
wheel (left rear);

}

e Fails to show relationships well
e Look at problem using a graph

5

Graphs

e Set of nodes and edges (links)

e Edge connects a pair of nodes
Directed or undirected

e Cycle: directed path that is a loop

@
e

loop

Tree

e Graph in which each node (except the root) has
exactly one parent node

May have multiple children

Leaf or terminal node: no children
O T root node

@/g \ O— leaf node

Tree Model of Car

Chassis

Right-front Left-front Rightrear Left-rear
wheel wheel wheel wheel

Hierarchical Transforms

e Robot arm: Many small parts

e Attributes (position, orientation, etc) depend on

each other

AROBOT HAMMER! —_ hammer

s

«— Dbase

L,

lower arm

- C

Hierarchical Transforms o

e Object dependency description using tree

structure

Root node

Base

l

Lower arm

l

Upper arm

Leaf node

l

Hammer

Object position and orientation
can be affected by its parent,
grand-parent, grand-grand-parent
... hodes

Hierarchical representation
is known as Scene Graph

Transformations

e Two ways to specify transformations:

e (1) Absolute transformation: each part of the object is
transformed independently relative to the origin

Translate the base by (5,0,0);
Translate the lower arm by (5,0,0);
Translate the upper arm by (5,0,0);

N

Relative Transformation

A better (and easier) way:

(2) Relative transformation: Specify the transformation
for each object relative to its parent

— Step 1: Translate base and —
Its descendants by (5,0,0); ——

Bl =~

Relative Transformation

Step 2: Rotate the lower arm and all its descendants
relative to the base’s local y axis by -90 degree

— N

1l

F > e
S

Relative Transformation o

e Represent relative transformation using scene

graph

l

Base {-----------1 Translate (5,0,0)

-

Lower arm

l

Upper arm

l

Hammer

........... —---| Rotate (-90) about its local y

Apply all the way
down

Apply all the way
down

Hierarchical Transforms Using OpenGL

e Translate base and all its descendants by (5,0,0)

e Rotate lower arm and its descendants by -90 degree about

local y

Base

l

Lower arm

l

Upper arm

l

Hammer

ctm = Loadldentity();

... /1 setup your camera

ctm = ctm * Translatef(5,0,0);
Draw_base();

ctm = ctm * Rotatef(-90, 0, 1, 0);
Draw_lower _arm();

Draw_upper_arm();
Draw_hammer();

Hierarchical Modeling

e Previous CTM had 1 level

e Hierarchical modeling: extend CTM to stack with
multiple levels using linked list

1 0 0 O
Current top .10 2 00
Of CTM stack 00 3 0
0 0 01

PushMatrix

e PushMatrix(): Save current modelview matrix in stack

e Positions 1 & 2 in linked list are same after PushMatrix
e Further Rotate, Scale, Translate affect only top matrix

Before PushMatrix After PushMatrix

1 0 0O 0 0O

Currenttop ___

Current top 0 0
3 0 Of CTM stack
0 1

0 2
Of CTM stack 0 0
00

o O O -
o O N

o w O

0
0
1

o w O O
R O O O

o O O -
o O N O

PopMatrix

e PopMatrix(): Delete position 1 matrix, position 2 matrix

becomes top

Before PopMatrix After PopMatrix

1 540 1 00

Currenttop ____, |0 2 2 0 Current top 0 20
Of CTM stack 0 6 3 0 Of CTM stack 0 0 3
0 0 01 0 0O

o o o -
o O N O
o w O O
R O O O

R O O O

PopMatrix and PushMatrix lllustration

Code Modelview Matrix

glloadIdentity();

gl Translatef(0.0, 0.0, —15.0);

glPushMatrix();
//Copy of M, placed on top-

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0);
//No change.

_ glPopMatrix();
//Back to before the push statement!

giTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8);
//No change.

Figure 4.19: Transitions of the modelview matrix stack.

Stack

.
I* M, —Mll
#J
MM,
¥ M2 l
Ml \
My *M, \ |
M, *M, \ Y

Processing in code order

* Note: Diagram uses old glTranslate,
glScale, etc commands

* We want same behavior though

Ref: Computer Graphics
Through OpenGL by Guha

Humanoid Figure

T

arm arm

20

Leftupper

Torso
Hoad Leftupper Rightupper
. - arm arm

Leftlower Rightlower

Right-upper

RightHlower

Building the Model

e Can build model using simple shapes

e Access parts through functions
torso()
left _upper_arm()

e Matrices describe position of node with respect
to its parent

M,,, positions left lower leg with respect to left upper
arm

21

XX
ooo
o0
S
Tree with Matrices
Torso
Mh Mfua Mrua Mfuf Mruf
Head Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ Mﬂa + Mrfa + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower

arm arm leg leg

22

XX
ooo
o0
S
Tree with Matrices
Set model-view matrix to T
M and draw torso orse
Mh Mfua Mrua Mfuf Mruf
Head Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ Mﬂa + Mrfc.' + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower

arm arm leg leg

23

XX
ooo
o0
S
Tree with Matrices
Set model-view matrix to T
MM, and draw head orse
Mh Mfua Mrua Mfuf Mruf
Head Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ Mﬂa + Mrfc.' + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower

arm arm leg leg

24

XX
ooo
o0
S
Tree with Matrices
Set model-view matrix to T
MM, , and draw left-upper arm orse
Mh Mfua Mrua Mfuf Mruf
Head Leftupper Right-upper Leftupper Rightupper
arm arm leg leg
+ Mﬂa + Mrfa + MIH +Mrﬂ
Left-lower Rightlower Left-lower Rightlower

arm arm leg leg

25

Stack-based Traversal

e We can use stack, Push, Pop for this

e Rather than recomputing MM, from scratch
or using an inverse matrix, we can use the
matrix stack to store M and other matrices as

we traverse the tree

26

Traversal Code

figure() { save present model-view matrix

PushMatrix() - | |
torso(): /update model-view matrix for head
Rotate (..); o | |
head(); - recover original model-view matrix
Popl\/latrn_(() ; ~——— save it again
PushMatrix();

Translate(.); _____ update model-view matrix
Rotate(..); for left upper arm
leTt_upper_arm(); recover and save original
PopMatrix(); —

model-view matrix again

27Push|\/|atrix() . rest of code

VRML

e Scene graph introduced by SGI Open Inventor

e Want to have a scene graph that can be used
over the World Wide Web

e Need links to other sites to support distributed
data bases

e Virtual Reality Markup Language
Based on Inventor data base
Implemented with OpenGL

28

VRML World Example

3 http:4flocalhostivspivrml. B.wrl - Microsoft Internet Explorer

Soubor Uprawy Zobrazit Oblbené Mastroje Mapowéda

Qe -) (%] &) (0 OHeda pobibens @Preda &) (- L e 3

L

Adresa @ httpefflocalhost fvspfvrml 8wl

i3 Ho MEdoEN

'j .

A" PFejl’t Odkazy *

(@B5 Contact YRML{X3D »

Pohledy 4
Grafika 4
Pahyby 3
Rycholst pobybu 4
Ukazat meho Avatara

Mataveni 4
Fullscreen
Tools »

‘Q Mistni intranet

References

e Angel and Shreiner, Interactive Computer Graphics
(6th edition), Chapter 8

