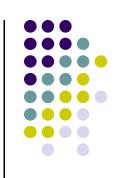
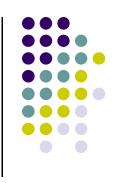
Computer Graphics (CS 543) Lecture 7 (Part 1): Projection (Part I)

Prof Emmanuel Agu

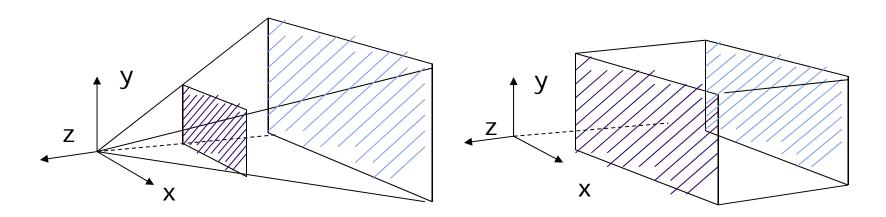
Computer Science Dept.
Worcester Polytechnic Institute (WPI)



No class next week Tuesday (Term break)!



Projection? map the object from 3D space to 2D screen



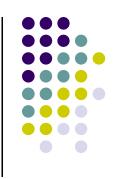
Perspective: Perspective() Parallel: Ortho()

Default Projections and Normalization

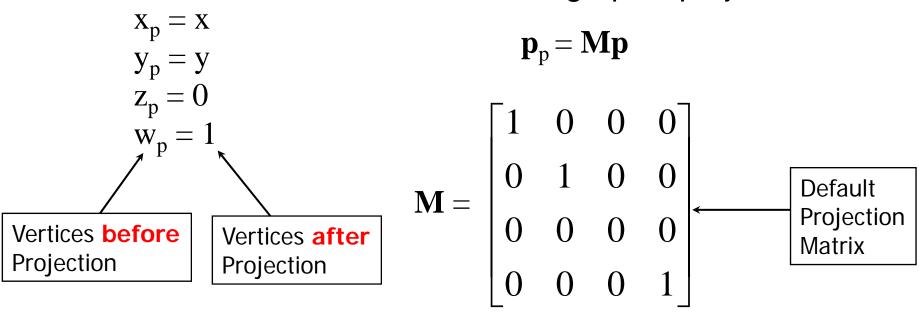
- What if you user does not set up projection?
- Default OpenGL projection in eye (camera) frame is orthogonal (Ortho());
- To project points within default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

Homogeneous Coordinate Representation



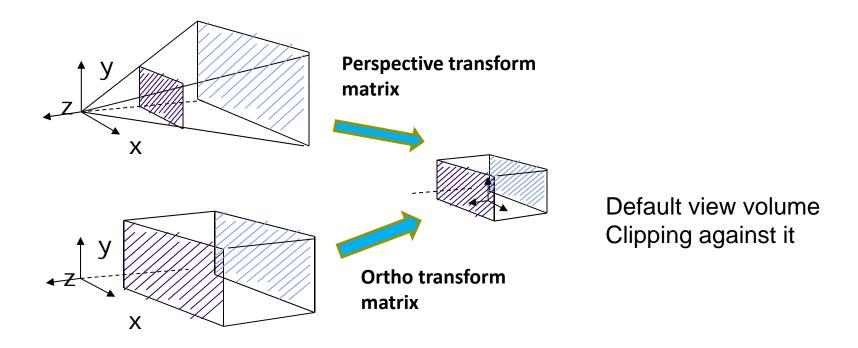
default orthographic projection

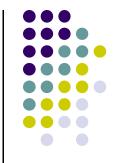


In practice, can let $\mathbf{M} = \mathbf{I}$, set the z term to zero later

Normalization

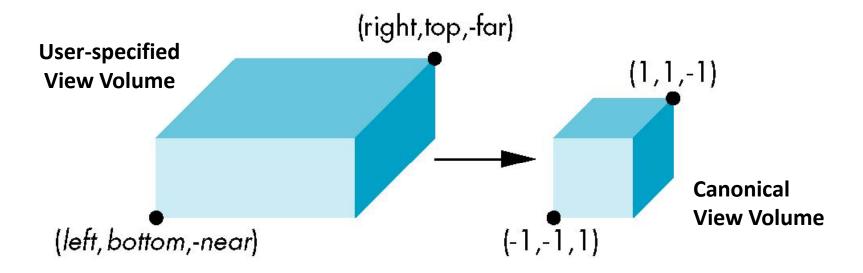
- Most graphics systems use view normalization
- Normalization: convert all other projection types to orthogonal projections with the default view volume



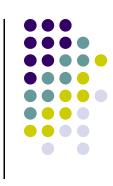


Parallel Projection

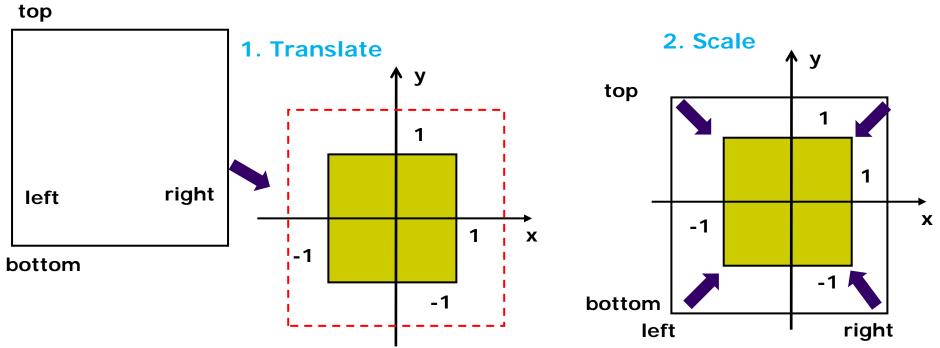
- Approach: Project everything in the visible volume into a canonical view volume (cube)
- normalization ⇒ find 4x4 matrix to convert specified view volume to default



glOrtho(left, right, bottom, top,near, far)

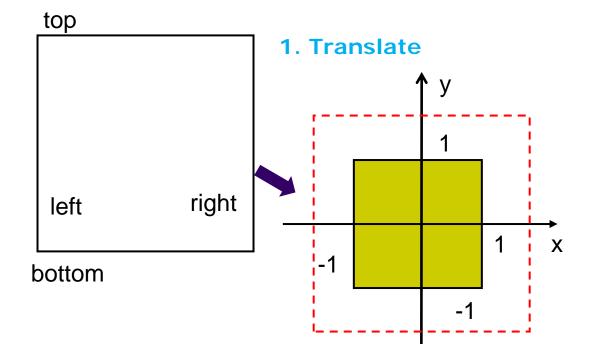


- Parallel projection can be broken down into two parts
 - 1. Translation: which centers view volume at origin
 - Scaling: which reduces cuboid of arbitrary dimensions to canonical cube (dimension 2, centered at origin)



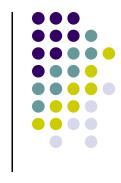
Parallel Projection: Ortho

- Translation sequence moves midpoint of view volume to coincide with origin:
- E.g. midpoint of x = (right + left)/2
- Thus translation factors along (x, y, z):



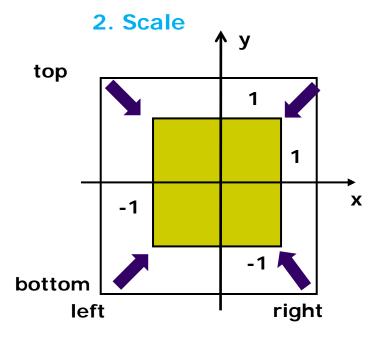
And translation matrix M1:

$$\begin{pmatrix}
1 & 0 & 0 & -(right + left)/2 \\
0 & 1 & 0 & -(top + bottom)/2 \\
0 & 0 & 1 & -(far + near)/2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$



Parallel Projection: Ortho

- Scaling factor is ratio of cube dimension to Ortho view volume dimension
- Scaling factors along (x, y, z):



And scaling matrix M2:

$$\begin{pmatrix}
\frac{2}{right-left} & 0 & 0 & 0 \\
0 & \frac{2}{top-bottom} & 0 & 0 \\
0 & 0 & \frac{2}{far-near} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Parallel Projection: Ortho

Concatenating M1xM2, we get transform matrix used by glOrtho

$$\begin{bmatrix} \frac{2}{\textit{right-left}} & 0 & 0 & 0 \\ 0 & \frac{2}{\textit{top-bottom}} & 0 & 0 \\ 0 & 0 & \frac{2}{\textit{far-near}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & -(\textit{right} + \textit{left})/2 \\ 0 & 1 & 0 & -(\textit{top} + \textit{bottom})/2 \\ 0 & 0 & 1 & -(\textit{far} + \textit{near})/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Ortho Projection

- Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Hence, general orthogonal projection in 4D is $P = M_{orth}ST$

References

- Interactive Computer Graphics (6th edition), Angel and Shreiner
- Computer Graphics using OpenGL (3rd edition), Hill and Kelley