Computer Graphics (CS 543)
Lecture 6 (Part 3): Projection (Part |)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Understand what is projection?
e Types of projection
Orthographic
Perspective Projection
e Derive projection matrices
Orthographic projection
Perspective projection

e Implementation

3D Viewing and View Volume

e Recall: 3D viewing set up

viewing
volume

camera

tripod

Projection Transformation

e View volume can have different shapes
e Different types of projection:
parallel, perspective, etc
e Control view volume parameters
Projection type: perspective, orthographic, etc.
Field of view and aspect ratio
Near and far clipping planes

Perspective Projection

e Similar to real world

e object foreshortening: Objects appear larger if

closer to camera

L

. S

\

i

1

i
5
[

] i

Perspective Projection

e Need:

Projection center
Projection plane
e Projection?
Draw line from object to projection center
Calculate where each cuts projection plane

Projectors \

camera [et | S
¥— Object in 3 space

~~~~~~

il

Projected image

Ao

rojection plane
Pro) P VRP

COP



Orthographic Projection

e No foreshortening effect — object distance from
camera does not matter

e The projection center is at infinite
e Projection calculation —just drop z coordinates




Field of View

e View volume parameter
e Determines how much of world is taken into picture
e Larger field of view = smaller object projection size

field of view cent’er of projection

(view angle) \




Near and Far Clipping Planes °

e Only objects between near and far planes are drawn

e Near plane + far plane + field of view = Viewing

Frustum

Near plane
\\

Far/plane
/



Viewing Frustrum

e Objects outside the frustum are clipped

Near plane

>Far’p'a”e

¥

Viewing Frustum



Applying Projection Transformation

e Previous OpenGL projection commands deprecated!!
Perspective projection:

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far)
Orthographic:
glOortho(left, right, bottom, top, near, far)
e Useful transforms so we implement similar in mat. h:

Perspective(fovy, aspect, near, far) or
Frustum(left, right, bottom, top, near, far)
Ortho(left, right, bottom, top, near, far)



Perspective(fovy, aspect, near, far)

e Aspect ratio is used to calculate the window width

front plane

ZJy —) fowy

Aspect =w /h




Frustum(left, right, bottom, top, near, far{

e Can use this function in place of Perspective()
e Same functionality, different arguments

left top

bottom
/b

near far



Ortho(left, right, bottom, top, near, far)

e For orthographic projection

bottom right

_____—r

near
far

near and far measured from camera




Example Usage: sece
Setting Projection Transformation :

void display()

{

glClear(GL_COLOR BUFFER BIT):

// Set up camera position
LookAt(0,0,1,0,0,0,0,1,0);

// set up perspective transformation
Perspective(fovy, aspect, near, far);

// draw something
display all(); // your display routine



Demo

e Nate Robbins demo on projection




Projection Transformation

e Projection? map the object from 3D space to 2D
screen

Perspective: Perspective() Parallel: Ortho()



Default Projections and Normalization

e What if you user does not set up projection?

e Default OpenGL projection in eye (camera) frame is
orthogonal (Ortho( ));

e To project points within default view volume
X, = X
Yo=Y
z,=0



Homogeneous Coordinate

Representation
Xp =X
p =Y
=0
=1

Nk s
e

Vertices before
Projection

Vertices after
Projection

o O O -

o O +—» O

0

0
0
0

default orthographic projection

P, = Mp

Default

nnnnnnnnnn
||||||

Matrix

_ O O O

In practice, can let M =1, set the z term to zero later




Normalization :

e Most graphics systems use view normalization

e Normalization: convert all other projection types to
orthogonal projections with the default view volume

Perspective transform

matrix
- % Default view volume

/ Clipping against it

Ortho transform
matrix




References

e Interactive Computer Graphics (6t edition), Angel and
Shreiner

e Computer Graphics using OpenGL (3" edition), Hill and Kelley



