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Objectives

e Understand what is projection?
e Types of projection
Orthographic
Perspective Projection
e Derive projection matrices
Orthographic projection
Perspective projection

e Implementation




3D Viewing and View Volume

e Recall: 3D viewing set up

viewing
volume

camera

tripod




Projection Transformation

e View volume can have different shapes
e Different types of projection:
parallel, perspective, etc
e Control view volume parameters
Projection type: perspective, orthographic, etc.
Field of view and aspect ratio
Near and far clipping planes




Perspective Projection

e Similar to real world

e object foreshortening: Objects appear larger if

closer to camera
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Perspective Projection

e Need:

Projection center
Projection plane
e Projection?
Draw line from object to projection center
Calculate where each cuts projection plane
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Orthographic Projection

e No foreshortening effect — object distance from
camera does not matter

e The projection center is at infinite
e Projection calculation —just drop z coordinates




Field of View

e View volume parameter
e Determines how much of world is taken into picture
e Larger field of view = smaller object projection size

field of view cent’er of projection
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Near and Far Clipping Planes °

e Only objects between near and far planes are drawn

e Near plane + far plane + field of view = Viewing

Frustum
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Viewing Frustrum

e Objects outside the frustum are clipped
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Applying Projection Transformation

e Previous OpenGL projection commands deprecated!!
Perspective projection:

gluPerspective(fovy, aspect, near, far) or
glFrustum(left, right, bottom, top, near, far)
Orthographic:
glOortho(left, right, bottom, top, near, far)
e Useful transforms so we implement similar in mat. h:

Perspective(fovy, aspect, near, far) or
Frustum(left, right, bottom, top, near, far)
Ortho(left, right, bottom, top, near, far)



Perspective(fovy, aspect, near, far)

e Aspect ratio is used to calculate the window width

front plane

ZJy —) fowy

Aspect =w /h




Frustum(left, right, bottom, top, near, far{

e Can use this function in place of Perspective()
e Same functionality, different arguments
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Ortho(left, right, bottom, top, near, far)

e For orthographic projection
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Example Usage: sece
Setting Projection Transformation :

void display()

{

glClear(GL_COLOR BUFFER BIT):

// Set up camera position
LookAt(0,0,1,0,0,0,0,1,0);

// set up perspective transformation
Perspective(fovy, aspect, near, far);

// draw something
display all(); // your display routine



Demo

e Nate Robbins demo on projection




Projection Transformation

e Projection? map the object from 3D space to 2D
screen

Perspective: Perspective() Parallel: Ortho()



Default Projections and Normalization

e What if you user does not set up projection?

e Default OpenGL projection in eye (camera) frame is
orthogonal (Ortho( ));

e To project points within default view volume
X, = X
Yo=Y
z,=0



Homogeneous Coordinate

Representation
Xp =X
p =Y
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In practice, can let M =1, set the z term to zero later




Normalization :

e Most graphics systems use view normalization

e Normalization: convert all other projection types to
orthogonal projections with the default view volume

Perspective transform

matrix
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