Computer Graphics (543) Lecture 3 (Part 1): Tiling, Maintaining Aspect Ratio & Fractals

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)

- Problem: want to single polyline dino.dat on screen
- Code:

```
// set world window (left, right, bottom, top)
Ortho2D(0, 640.0, 0, 440.0);

// now set viewport (left, bottom, width, height)
glViewport(0, 0, 64, 44);

// Draw polyline fine
drawPolylineFile(dino.dat);
```


- Problem: Want to tile polyline file on screen
- Solution: W-to-V in loop, adjacent tiled viewports

One world Window

Multiple tiled viewports

Tiling Polyline Files

- Problem: want to tile dino.dat in 5x5 across screen
- Code:

Maintaining Aspect Ratios

- Aspect ratio R = Width/Height
- What if window and viewport have different aspect ratios?
- Two possible cases:

Case a: viewport too wide

What if Window and Viewport have different Aspect Ratios?

- **R** = window aspect ratio, **W x H** = viewport dimensions
- Two possible cases:
 - Case A (R > W/H): map window to tall viewport?
 Viewport

Aspect ratio R

Window

W/R

Ortho2D(left, right, bottom, top);

R = (right - left)/(top - bottom);

W

If(R > W/H)

glViewport(0, 0, W, W/R);

What if Window and Viewport have different Aspect Ratios?

• Case B (R < W/H): map window to wide viewport?

reshape() function that maintains aspect ratio

```
// Ortho2D(left, right, bottom, top )is done previously,
// probably in your draw function
// function assumes variables left, right, top and bottom
// are declared and updated globally
void myReshape(double W, double H){
  R = (right - left)/(top - bottom);
  if(R > W/H)
      glViewport(0, 0, W, W/R);
  else if(R < W/H)
      glViewport(0, 0, H*R, H);
  else
      glViewport(0, 0, W, H); // equal aspect ratios
```

What are Fractals?

- Mathematical expressions
- Approach infinity in organized way
- Utilizes recursion on computers
- Popularized by Benoit Mandelbrot (Yale university)
- Dimensional:
 - Line is one-dimensional
 - Plane is two-dimensional
- Defined in terms of self-similarity

Fractals: Self-similarity

- Level of detail remains the same as we zoom in
- Example: surface roughness or profile same as we zoom in
- Types:
 - Exactly self-similar
 - Statistically self-similar

Examples of Fractals

- Clouds
- Grass
- Fire
- Modeling mountains (terrain)
- Coastline
- Branches of a tree
- Surface of a sponge
- Cracks in the pavement
- Designing antennae (www.fractenna.com)

Example: Mandelbrot Set

Example: Fractal Terrain

Courtesy: Mountain 3D Fractal Terrain software

Example: Fractal Terrain

Example: Fractal Art

Courtesy: Internet Fractal Art Contest

Application: Fractal Art

Courtesy: Internet Fractal Art Contest

Recall: Sierpinski Gasket Program

Popular fractal

Koch Curves

- Discovered in 1904 by Helge von Koch
- Start with straight line of length 1
- Recursively:
 - Divide line into 3 equal parts
 - Replace middle section with triangular bump, sides of length 1/3
 - New length = 4/3

Koch Curves

Koch Snowflakes

- Can form Koch snowflake by joining three Koch curves
- Perimeter of snowflake grows exponentially:

$$P_i = 3\left(\frac{4}{3}\right)^i$$

where P_i is perimeter of the ith snowflake iteration

- However, area grows slowly and $S_{\infty} = 8/5!!$
- Self-similar:
 - zoom in on any portion
 - If n is large enough, shape still same
 - On computer, smallest line segment > pixel spacing


```
Pseudocode, to draw K_n:
```

```
If (n equals 0) draw straight line
```

Else{

Draw K_{n-1}

Turn left 60°

Draw K_{n-1}

Turn right 120°

Draw K_{n-1}

Turn left 60°

Draw K_{n-1}

60° 1

}

- Express complex curves as simple set of **string-production** rules
- Example rules:
 - 'F': go forward a distance 1 in current direction
 - '+': turn right through angle **A** degrees
 - '-': turn left through angle **A** degrees
- Using these rules, can express koch curve as: "F-F++F-F"
- Angle $\mathbf{A} = 60$ degrees

L-Systems: Koch Curves

- Rule for Koch curves is F -> F-F++F-F
- Means each iteration replaces every 'F' occurrence with "F-F++F-F"
- So, if initial string (called the **atom**) is 'F', then
- $S_1 = "F-F++F-F"$
- S₂ ="F-F++F-F- F-F++F-F++ F-F++F-F"
- $S_3 =$
- Gets very large quickly

Iterated Function Systems (IFS)

- Recursively call a function
- Does result converge to an image? What image?
- IFS's converge to an image
- Examples:
 - The Mandelbrot set
 - The Fern

- Based on iteration theory
- Function of interest:

$$f(z) = (s)^2 + c$$

• Sequence of values (or orbit):

$$d_1 = (s)^2 + c$$

$$d_2 = ((s)^2 + c)^2 + c$$

$$d_3 = (((s)^2 + c)^2 + c)^2 + c$$

$$d_4 = ((((s)^2 + c)^2 + c)^2 + c)^2 + c$$

- Orbit depends on s and c
- Basic question,:
 - For given s and c,
 - does function stay finite? (within Mandelbrot set)
 - explode to infinity? (outside Mandelbrot set)
- Definition: if |d| < 1, orbit is finite else inifinite
- Examples orbits:
 - s = 0, c = -1, orbit = 0,-1,0,-1,0,-1,0,-1,.....finite
 - s = 0, c = 1, orbit = 0,1,2,5,26,677..... *explodes*

- Mandelbrot set: use complex numbers for c and s
- Always set s = 0
- Choose c as a complex number
- For example:

•
$$s = 0$$
, $c = 0.2 + 0.5i$

• Hence, orbit:

• 0, c,
$$c^2 + c$$
, $(c^2 + c)^2 + c$,

Definition: Mandelbrot set includes all finite orbit c

• Some complex number math:

$$i * i = -1$$

Example:

$$2i*3i = -6$$

Modulus of a complex number, z = ai + b:

$$|z| = \sqrt{a^2 + b^2}$$

Squaring a complex number:

$$(x + yi)^2 = (x^2 - y^2) + (2xy)i$$

- with s=2, c=-1
- with s = 0, c = -2+i

- Calculate first 3 terms
 - with s=2, c=-1, terms are

$$2^{2} - 1 = 3$$
$$3^{2} - 1 = 8$$

$$8^2 - 1 = 63$$

• with
$$s = 0$$
, $c = -2+i$

$$0 + (-2+i) = -2+i$$

$$(-2+i)^{2} + (-2+i) = 1-3i$$

$$(1-3i)^{2} + (-2+i) = -10-5i$$

$$(x + yi)^2 = (x^2 - y^2) + (2xy)i$$

- **Fixed points:** Some complex numbers converge to certain values after *x* iterations.
- Example:
 - s = 0, c = -0.2 + 0.5i converges to -0.249227 + 0.333677i after 80 iterations
 - Experiment: square -0.249227 + 0.333677i and add
 -0.2 + 0.5i
- Mandelbrot set depends on the fact the convergence of certain complex numbers

- Math theory says calculate terms to infinity
- Cannot iterate forever: our program will hang!
- Instead iterate 100 times
- Math theorem:
 - if no term has exceeded 2 after 100 iterations, never will!
- Routine returns:
 - Number of times iterated before modulus exceeds 2, or
 - 100, if modulus doesn't exceed 2 after 100 iterations

 $(x + yi)^2 = (x^2 - y^2) + (2xy)i$


```
(x+yi)^2 + (c_X + c_Yi) = [(x^2 - y^2) + c_X] + (2xy + c_Y)i int dwell(double cx, double cy)  \{ \text{ // return true dwell or Num, whichever is smaller } \\ \text{#define Num 100 // increase this for better pics}  double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy; for(int count = 0; count <= Num && fsq <= 4; count++)  \{ \\ \text{tmp = dx; } \\ \text{// save old real part } \\ \text{dx = dx*dx - dy*dy + cx; // new real part } \\ \text{dy = 2.0 * tmp * dy + cy; // new imag. Part } \\ \text{fsq = dx*dx + dy*dy;}
```

return count; // number of iterations used

- Map real part to x-axis
- Map imaginary part to y-axis
- Decide range of complex numbers to investigate. E.g.
 - X in range [-2.25: 0.75], Y in range [-1.5: 1.5]
- Choose your viewport. E.g:
 - Viewport = [V.L, V.R, V.B, V.T]= [60,380,80,240]

ortho2D Im cols rows rows

- So, for each pixel:
 - Compute corresponding point in world
 - Call your dwell() function
 - Assign color <Red,Green,Blue> based on dwell() return value
- Choice of color determines how pretty
- Color assignment:
 - Basic: In set (i.e. dwell() = 100), color = black, else color = white
 - Discrete: Ranges of return values map to same color
 - E.g 0 − 20 iterations = color 1
 - 20 40 iterations = color 2, etc.
 - Continuous: Use a function

Use continuous function

The Fern

- Discovered by German Scientist, David Hilbert in late 1900s
- Space filling curve
- Drawn by connecting centers of 4 sub-squares, make up larger square.

• Iteration 0: To begin, 3 segments connect 4 centers in upside-

down U shape

Iteration 0

Hilbert Curve: Iteration 1

- Each of 4 squares divided into 4 more squares
- U shape shrunk to half its original size, copied into 4 sectors
- In top left, simply copied, top right: it's flipped horizontally
- In the bottom left, rotated 90 degrees clockwise,
- Bottom right, rotated 90 degrees counter-clockwise.
- 4 pieces connected with 3 segments, each of which is same size as the shrunken pieces of the U shape (in red)

- Each of the 16 squares from iteration 1 divided into 4 squares
- Shape from iteration 1 shrunk and copied.
- 3 connecting segments (shown in red) are added to complete the curve.
- Implementation? Recursion is your friend!!

FREE SOFTWARE

- Free fractal generating software
 - Fractint
 - FracZoom
 - Astro Fractals
 - Fractal Studio
 - 3DFract

References

- Angel and Shreiner, Interactive Computer Graphics, 6th edition, Chapter 9
- Hill and Kelley, Computer Graphics using OpenGL, 3rd edition, Appendix 4