Computer Graphics (543)
Lecture 3 (Part 1): Tiling, Maintaining
Aspect Ratio & Fractals

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Recall: Drawing Polyline Files

e Problem: want to single polyline dino.dat on screen

e Code:

// set world window (left, right, bottom, top)
Ortho2D(0, 640.0, 0, 440.0);

// now set viewport (left, bottom, width, height)
glViewport(0, 0, 64, 44);

// Draw polyline fine
drawPolylineFile(dino.dat);

Tiling using W-to-V Mapping °

e Problem: Want to tile polyline file on screen
e Solution: W-to-V in loop, adjacent tiled viewports

| N))
1" ") . . -
?z b S S Y S
| 7 ") . . .

one o T S Y S S

Multiple tiled viewports

Tiling Polyline Files

e Problem: want to tile dino.dat in 5x5 across screen

e Code:

// set world window
Ortho2D(0, 640.0, 0, 440.0);

for(int 1=0;1 < 5;1++)
{
for(int J = 0;jJ < 5; j++t)
{ // .. now set viewport in a loop
glViewport(ah * 64, jJ * 44; 64, 44);
drawPolylineFile(dino.dat);

Maintaining Aspect Ratios

e Aspect ratio R = Width/Height
e What if window and viewport have different aspect ratios?

e Two possible cases:

e T g i 1 1
Case a: viewport too wide ?m

R
S|

Case b: viewport too tall

000
1
What if Window and Viewport have different| ¢
Aspect Ratios?
e R =window aspect ratio, W x H = viewport dimensions
e Two possible cases:
Case A (R > W/H): map window to tall viewport?
Viewport
Aspect ratio R <1‘::> H

J _—\ A
Window W/R
) =

Ortho2D(left, right, bottom, top);
R = (right — left)/(top — bottom); W
If(R > W/H)

glViewport(0, 0, W, W/R);

What if Window and Viewport have different
Aspect Ratios?

e Case B (R < W/H): map window to wide viewport?

W
Aspect <i:j>
ratio R

% 7

~

Window HR
Viewport

Ortho2D(left, right, bottom, top);
R = (right — left)/(top — bottom);
IT(R < W/H)

glViewport(0, 0, H*R, H);

reshape() function that maintains aspect ratio

// Ortho2D(left, right, bottom, top)is done previously,
// probably 1In your draw function

// fTunction assumes variables left, right, top and bottom
// are declared and updated globally

void myReshape(double W, double H){
R = (right — left)/(top — bottom);

iT(R > W/H)
glViewport(0, 0, W, W/R);
else 1T(R < W/H)
glViewport(0, 0, H*R, H);
else
glViewport(0O, 0, W, H); // equal aspect ratios

What are Fractals?

e Mathematical expressions
e Approach infinity in organized way
e Utilizes recursion on computers
e Popularized by Benoit Mandelbrot (Yale university)
e Dimensional:
Line is one-dimensional
Plane is two-dimensional
e Defined in terms of self-similarity

Fractals: Self-similarity °

e Level of detail remains the same as we zoom in
e Example: surface roughness or profile same as we zoom in
e Types:

e Exactly self-similar

e Statistically self-similar

Examples of Fractals

e Clouds

e Grass

e Fire

e Modeling mountains (terrain)

e Coastline

e Branches of a tree

e Surface of a sponge

e Cracks in the pavement

e Designing antennae (www.fractenna.com)

Example: Mandelbrot Set

xample: Mandelbrot Set

Example: Fractal Terrain

Courtesy: Mountain 3D
Fractal Terrain software

Example: Fractal Terrain

Example: Fractal Art

Courtesy: Internet
Fractal Art Contest

Application: Fractal Art

Courtesy: Internet
Fractal Art Contest

Recall: Sierpinski Gasket Program

e Popular fractal

Koch Curves

e Discovered in 1904 by Helge von Koch

e Start with straight line of length 1

e Recursively:
e Divide line into 3 equal parts
e Replace middle section with triangular bump, sides of length 1/3
e New length=4/3

Koch Curves

Koch Snowflakes

e Can form Koch snowflake by joining three Koch curves
e Perimeter of snowflake grows exponentially:

P =34

where P, is perimeter of the ith snowflake iteration
e However, area grows slowly and S__ = 8/5!!
e Self-similar:
Zoom in on any portion
If nis large enough, shape still same
On computer, smallest line segment > pixel spacing

Koch Snowflakes

Pseudocode, to draw K, :

If (n equals 0) draw straight line

Else{

Draw K, _;

Turn left 60°
Draw K, _;

Turn right 120°
Draw K, _;

Turn left 60°

Draw K, _;

L-Systems: Lindenmayer Systems | :

e Express complex curves as simple set of string-production rules
e Example rules:
e ‘F:goforward a distance 1 in current direction
e ‘+’:turnright through angle A degrees
e ‘“’:turn left through angle A degrees
e Using these rules, can express koch curve as: “F-F++F-F”
e Angle A =60 degrees

L-Systems: Koch Curves

e Rule for Koch curves is F -> F-F++F-F

e Means each iteration replaces every ‘F’ occurrence with “F-F++F-F”
e So, if initial string (called the atom) is ‘F’, then

o S, =“F-F++F-F”

o S, =“F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”

o S;=...

e Gets very large quickly

K,: K,:

60° /\

Iterated Function Systems (IFS)

e Recursively call a function
e Does result converge to an image? What image?
e |FS’s converge to an image
e Examples:
e The Mandelbrot set
e The Fern

Mandelbrot Set

e Based on iteration theory
e Function of interest:

f(z)=(s)’+c

e Sequence of values (or orbit):
d, =(s)* +c
d, =((s)* +c)’ +c
d, =(((s)’ +c)*+c)’ +c
d, =((((s)* +¢c)* +c)* +c)° +c¢

Mandelbrot Set

e Orbit dependsonsandc
e Basic question,:
For given s and ¢,
does function stay finite? (within Mandelbrot set)
explode to infinity? (outside Mandelbrot set)
e Definition: if |d| <1, orbit is finite else inifinite
e Examples orbits:
s=0,c=-1, orbit=0,-1,0,-1,0,-1,0,-1,.....finite
s=0,c=1,o0rbit=0,1,2,5,26,677...... explodes

Mandelbrot Set

e Mandelbrot set: use complex numbers for cand s
e Alwayssets=0
e Choose c as a complex number
e For example:
s=0,c=0.2+0.5i
e Hence, orbit:
0, ¢, c’°+c, (c°+c)f+c, ...

e Definition: Mandelbrot set includes all finite orbit ¢

Mandelbrot Set

e Some complex number math:
1*1=-1

e Example:

21*31 =—6

e Modulus of a complex number, z = ai + b:

z —aZ+b?

e Squaring a complex number:

(x+yi)* = (x* —y*) +(2xy)]

Im

Argand

diagram

Re

Mandelbrot Set

e Calculate first 3 terms
e withs=2, c=-1
o withs=0, c=-2+i

Mandelbrot Set

e Calculate first 3 terms
e with s=2, c=-1, terms are
22_1=3

3*-1=8
8° -1=63

o withs=0, c=-2+i
O+ (-2+1)=-2+I
(—2+i)°+(-2+i)=1-3i
(1-3i)° +(-2+i)=—-10-5i

(x+yi)* = (X" = y*) +(2xy)]

Mandelbrot Set

e Fixed points: Some complex numbers converge
to certain values after x iterations.

e Example:

s=0,c=-0.2 +0.5i converges to —0.249227 +
0.333677i after 80 iterations

Experiment: square —0.249227 + 0.333677i and add
-0.2 + 0.5i

e Mandelbrot set depends on the fact the
convergence of certain complex numbers

Mandelbrot Set Routine

e Math theory says calculate terms to infinity
e Cannot iterate forever: our program will hang!
e Instead iterate 100 times
e Math theorem:
if no term has exceeded 2 after 100 iterations, never will!
e Routine returns:
Number of times iterated before modulus exceeds 2, or

100, if modulus doesn’t exceed 2 after 100 iterations
Number < 100

sS. C .| Mandelbrot (first term > 2)
| function

100 (did not explode)

Mandelbrot dwell() function

(X+yi)* =(X* = y*)+(2xy)i
(X+yi)*+(c, +c,i)=[(x*—y?)+c,]+ (2xy +c,)i

int dwell(double cx, double cy)
{ // return true dwell or Num, whichever i1s smaller
#define Num 100 // increase this for better pics

double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;
for(int count = O;count <= Num && fsqg <= 4; count++)
{

tmp = dx; // save old real part

dx = dx*dx — dy*dy + cx; // new real part

dy = 2.0 * tmp * dy + cy; // new imag. Part

fsq = dx*dx + dy*dy;
by

return count; // number of i1terations used

Mandelbrot Set

e Map real part to x-axis

e Map imaginary part to y-axis

e Decide range of complex numbers to investigate. E.g:
e Xinrange[-2.25:0.75], Yinrange [-1.5: 1.5]

e Choose your viewport. E.g:
e Viewport=[V.L, V.R, V.B, V.T]=[60,380,80,240]

ortho2D Im A

window

L

Mandelbrot Set

e So, for each pixel:
Compute corresponding point in world
Call your dwell() function
Assign color <Red,Green,Blue> based on dwell() return value
e Choice of color determines how pretty
e Color assignment:
Basic: In set (i.e. dwell() = 100), color = black, else color = white
Discrete: Ranges of return values map to same color
E.g 0— 20 iterations = color 1
20 — 40 iterations = color 2, etc.
Continuous: Use a function

Mandelbrot Set

Use continuous function

~ color
mrensiiies

1 L

A

red, yellow

"

hJ_zu:k

-
-

The Fern

Hilbert Curve

e Discovered by German Scientist, David Hilbert in late 1900s

e Space filling curve

e Drawn by connecting centers of 4 sub-squares, make up
larger square.

e Iteration 0: To begin, 3 segments connect 4 centers in upside-
down U shape

Iteration 0

Hilbert Curve: Iteration 1 e

e Each of 4 squares divided into 4 more squares

e U shape shrunk to half its original size, copied into 4 sectors
e In top left, simply copied, top right: it's flipped horizontally
e In the bottom left, rotated 90 degrees clockwise,

e Bottom right, rotated 90 degrees counter-clockwise.

e 4 pieces connected with 3 segments, each of which is same
size as the shrunken pieces of the U shape (in red)

l
L

)

|
]

Hilbert Curve: Iteration 2

e Each of the 16 squares from iteration 1 divided into 4 squares
e Shape from iteration 1 shrunk and copied.
e 3 connecting segments (shown in red) are added to complete

the curve.

I_l

e Implementation? Recursion is your friend!!
|_| ‘ J

I
J_

C

:
J

|

i
1
!

T
1
m

L
L

FREE SOFTWARE

e Free fractal generating software

Fractint
FracZoom
Astro Fractals
Fractal Studio
3DFract

References

e Angel and Shreiner, Interactive Computer Graphics,
6t edition, Chapter 9

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition, Appendix 4

