Computer Graphics (CS 543)
Lecture 10: Part 2
Ray Tracing (Part 1)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Raytracing

e Global illumination-based rendering method
e Simulates rays of light, natural lighting effects

e Because light path is traced, handles effects tough for
openGL:

Shadows

Multiple inter-reflections
Transparency

Refraction

Texture mapping

e Newer variations... e.g. photon mapping (caustics,
participating media, smoke)

e Note: raytracing can be semester graduate course
e Today: start with high-level description

Raytracing Uses

e Entertainment (movies, commercials)

e Games (pre-production)

e Simulation (e.g. military)

e Image: Internet Ray Tracing Contest Winner (April 2003)

How Raytracing Works

e OpenGL is object space rendering
start from world objects, rasterize them
e Ray tracing is image space method
Start from pixel, what do you see through this pixel?
e Looks through each pixel (e.g. 640 x 480)
e Determines what eye sees through pixel
e Basic idea:
Trace light rays: eye -> pixel (image plane) -> scene
If a ray intersect any scene object in this direction

Yes? render pixel using object color
No? it uses the background color

e Automatically solves hidden surface removal problem

Case A: Ray misses all objects

Case B: Ray hits an object

Case B: Ray hits an object

" Ray hits object: Check if hit point is in shadow, build
secondary ray (shadow ray) towards light sources.

Case B: Ray hits an object

=|f shadow ray hits another object before light source: first
intersection point is in shadow of the second object. Otherwise,

collect light contributions

i'

Case B: Ray hits an object

=First Intersection point in the shadow of the second
object is the shadow area.

Reflected Ray

="\When a ray hits an object, a reflected ray is generated which
is tested against all of the objects in the scene.

Reflection: Contribution from
the reflected ray

Transparency

=|f intersected object is transparent, transmitted ray is generated and
tested against all the objects in the scene.

Transparency: Contribution
from transmitted ray

Reflected Ray: Recursion

Reflected rays can generate other reflected rays that can generate
other reflected rays, etc. Case A: Scene with no reflection rays

Reflected Ray: Recursion

Case B: Scene with one layer of reflection

Reflected Ray: Recursion

Case C: Scene with two layers of reflection

Ray Tree

Fig. 12. The ray tree in schematic form.

e Reflective and/or transmitted rays are continually generated
until ray leaves the scene without hitting any object or a preset
recursion level has been reached.

Ray-Object Intersections

e So, express ray as equation (origin is eye, pixel determines
direction)

e Define aray as:
RO = [x0, yO, zO] - origin of ray
Rd = [xd, yd, zd] -direction of ray
e then define parametric equation of ray:
R(t) = RO + Rd * t witht>0.0
e Express all objects (sphere, cube, etc) mathematically
e Ray tracing idea:

put ray mathematical equation into object equation
determine if real solution exists.

Object with smallest hit time is object seen

Ray-Object Intersections

e Dependent on parametric equations of object

Ray-Sphere Intersections
Ray-Plane Intersections
Ray-Polygon Intersections
Ray-Box Intersections
Ray-Quadric Intersections
(cylinders, cones, ellipsoids, paraboloids)

Writing a RayTracer

e The first step is to create the model of the objects

e One should NOT hardcode objects into the program,
but instead use an input file.

e But for this simple ray tracer we shall hardcode our
scenes into .cpp file

e Just two shapes: sphere, mesh

e The output image/file will consist of three intensity
values (Red, Green, and Blue) for each pixel.

Accelerating Ray Tracing

e Ray Tracing is time-consuming because of intersection
calculations

e Each intersection requires from a few (5-7) to many (15-20)
floating point (fp) operations

e Example: for a scene with 100 objects and computed with a
spatial resolution of 512 x 512, assuming 10 fp operations
per object test there are about 250,000 X 100 X10 =
250,000,000 fps.

= Solutions:

= Use faster machines

= Use specialized hardware, especially parallel processors.

= Note: ray tracing does not use 3D graphics card (new drn)
= Speed up computations by using more efficient algorithms
= Reduce the number of ray - object computations

Reducing Ray-Object Intersections

e Adaptive Depth Control: Stop generating
reflected/transmitted rays when computed intensity becomes
less than certain threshold.

e Bounding Volumes:
Enclose groups of objects in sets of hierarchical bounding volumes
First test for intersection with the bounding volume

Then only if there is an intersection, against the objects enclosed by
the volume.

e First Hit Speed-Up: use modified Z-buffer algorithm to
determine the first hit.

Writing a Ray Tracer

e Our approach:
Give arrangement of minimal ray tracer
Use that as template to explain process
e Minimal?
Yes! Basic framework

Just two object intersections
Minimal/no shading

e Paul Heckbert (CMU):

Ran ray tracing contest for years
Wrote ray tracer that fit on back of his business card

Pseudocode for Ray Tracer

e Basic idea

color Raytracer{
for(each pixel direction){
determine Tirst object 1n this pixel direction

calculate color shade
return shade color

More Detailed Ray Tracer Pseudocode (fig 124)

Define the objects and light sources 1In the scene
Set up the camera
For(int r = O; r < nRows; r++){
for(int ¢ = 0; ¢ < nCols; c++){
1. Build the rc-th ray

2. Find all object iIntersections with rc-th ray

3. ldentify closest object Intersection

4. Compute the “hit point” where the ray hits the
object, and normal vector at that point

5. Find color of light to eye along ray

6. Set rc-th pixel to this color

Scene Definition

e We shall deal with only one shape just to set up:
Sphere:

Dimension 1

No transformation (no translate, rotate, scale)

e Basically 1 unit sphere sitting at origin

Rendering?

e Imagine big rectangle (2 triangles) facing camera
e Ray trace to texture image[N][N][3]
e Texture map image onto rectangle

Ray trace

=

texture rectangle

Rendering?

e Declare two colors for texture
e Sphere color

e Background color
Sphere color

Ray trace |

=

Background

color texture rectangle

Map texture
e Declare polygon as two triangles

point4 points[6]

= {point4(0.0, 0.0, 0.0, 1.0, point4(0.0, 1.0, 0.0, 1.0),
point4(1.0, 1.0, 0.0, 1.0, point4(1.0, 1.0, 0.0, 1.0),
point4(1.0, 0.0, 0.0, 1.0, point4(0.0, 0.0, 0.0, 1.0)}

GIfloat tex coord[6][2] = {{0.0, 0.0}, {0.0, 1.0}, {1.0, 1.0},
{1.0, 1.0}, {1.0, 0.0}, {0.0, 0.0}},

Ray trace

=

texture rectangle

Rendering texture

e Generate image using ray tracing
e Move image, rectangle to GPU
e Texture map as usual

(See section 9.8.5 of text. Mandelbrot example 9.2 on book
website)

Ray trace

texture rectangle

Ray Tracer Pseudocode

Set up the camera
for(int r = 0; r < nRows; r++){
for(int ¢ = 0; ¢ < nCols; c++){
1. Build the rc-th ray

2. Find all object intersections with rc-th ray

3. ldentify closest object intersection

4. Compute the “hit point” where the ray hits the
object, and normal vector at that point

5. Find color of light to eye along ray

6. Set rc-th pixel to this color

Setting RC-th pixel to Calculated Color |

e Simply write into appropriate location of texture

image[1]31I0] = r;
image[1131101 =
image[1]J110] =

o Q

e Note:r, g, bis either color of sphere if pixel covers sphere, or
background color

e But ray tracing can take time.. minutes, days, weeks!! ©?
e Use notion of blocksize to speedup ray tracing

Setting RC-th pixel to Calculated Color

e Break screen into blocks (fat pixels)

e Ray trace only top-left pixel of block
e 1 calculation, set entire block to calculated color
e E.g. BlockSize = 3, ray trace, top-left pixel, set entire block to green

e Affects resolution of picture
e Initially use large blocksize to verify code, then set to 1

Modified Ray Tracer Pseudocode Using | 22
BlockSize

Set up the camera
For(int r = 0O; r < nRows; r+= blockSize){
for(int ¢ = 0; ¢ < nCols; c+= blockSize){
1. Build the rc-th ray
. Find all object intersections with rc-th ray
Identify closest object Intersection
. Compute the “*hit point” where the ray hits the
object, and normal vector at that point
5. Find color (clr) of light to eye along ray
color_rect(r, g, b), r, c, blockSize);

B~ WD

} Define function that colors
In blockSize x blockSize with
Ray traced colors

Modified Ray Tracer Pseudocode Using
BlockSize

Set up the camera
For(int r = O; r < nRows; r+= blockSize){
for(int ¢ = 0; ¢ < nCols; c+= blockSize){
1. Build the rc-th ray
. Find all object intersections with rc-th ray
Identify closest object Intersection
. Compute the *“*hit point” where the ray hits the
object, and normal vector at that point
5. Find color (clr) of light to eye along ray

> WD

Build the RC-th Ray

e Parametric expression ray starting at eye and
passing through pixel at row r, and column ¢

ray = origin + (direction)t
r(t) =eye+dir_t
e But what exactly is this dir,(t) ?

e need to express ray direction in terms of
variables r and c

e Now need to set up camera, and then express
dir,. in terms of camerarand c

Modified Ray Tracer Pseudocode Using
BlockSize

Set up the camera

2. Find all object i1ntersections with rc-th ray

3. ldentify closest object Intersection

4. Compute the “hit point” where the ray hits the
object, and normal vector at that point

5. Find color (clr) of light to eye along ray

color_rect(r, g, b), r, c, blockSize);

Set up Camera Geometry

e As before, camera has axes (u, v, n) and position eye
with coordinates (eye.x, eye.y, eye.z)

e Camera extends from —W to +W in u-direction
e Camera extends from —H to +H in v-direction

v (uc ’ Vr)

Row r all /

Column c

Set up Camera Geometry

Viewport transformation?

Simplest transform: viewport is pasted onto window at
near plane. So,

viewport (screen) width: 1 to nCols (or 0 to nCols —1)
Window width: -W to +W

Can show that a given ¢ maps to
U, =W W —2C
nCols

forc=0,1,.....nCols - 1

Set up Camera Geometry

e Similarly
viewport (screen) height: 1 to nRows
Window width: -H to +H

e Can show that a given r maps to

2r

v, =—H +H
NROwWS

e forr=0,1,.....nRows - 1

....(or 0 to nRows —1)

Set up Camera Geometry

e Near plane lies distance N along n axis
e Camera has aspect ratio aspect and view angle @
e Such that

H=N tan(H/Z) W =H - aspect

V
. . \ Near plane
e Thus pixel (r, c) location P

expressed in terms of uvand n
eye—Nn+u.u+v,v n 6

Set up Camera Geometry

e So, pixel location ..Near plane lies distance N along n
axis
eye=—-Nn+u . u+v,v
r(t) =eye(l—-t)+(eye—Nn+u_u+v v)t

e Parametric form of ray starting at eye and going
through pixel is then. Note: eye is at t =0, hits pixel at

t=1 r(t) =eye+dir,.t

e Manipulating expressions, if

dir = —Nn+W (2 _1u+ H (2"

nCols NROWS

—1Dv

Set up Camera Geometry
So, ray starts at t =0, hits pixelatt=1

Ray hits scene objects at time t,, > 1
If t,. <0, object is behind the eye

For a given ray, if two objects have hit times t1 and t2, smaller hit
time is closer to eye

In fact, for all hit times along ray, smallest hit time is closest
If we know hit time of an object, t, ., we can solve for object’s
position (x, y, z) in space as

P =eye+dir t.,

Do this separately for x, y and z

Thus automatically, ray tracing solves Hidden surface removal
problem

Where are we?

Define the objects and light sources 1In the scene
Set up the camera
for(int r = 0; r < nRows; r+= blockSize){
for(int ¢ = 0; ¢ < nCols; c+= blockSize){
1. Build the rc-th ray

2. Find all object iIntersections with rc-th ray

3. ldentify closest object i1ntersection

4. Compute the “hit point” where the ray hits the
object, and normal vector at that point

5. Find color (clr) of light to eye along ray

color_rect(r, g, b), r, c, blockSize);

References

e Hill and Kelley, Computer Graphics using OpenGL,
edition, Chapter 12

3rd

