Computer Graphics
CS 543 — Lecture 8 (Part 3)
Shadows

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Shadows

Basic idea:

Introduction to Shadows

Introduction to Shadows

e Shadows make image more realistic

Important visual cues on relative positions of objects
in scene

e Rendering shadows:
Points in shadow: use only ambient component
Points NOT in shadow: use all lighting components
Simple illumination models == simple shadows

e Two methods:

Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing

Projective Shadows

e Oldest methods
Used in flight simulators to provide visual clues

e Projection of a polygon is a polygon called a
shadow polygon

e Given a point light source and a polygon, the
vertices of the shadow polygon are the
projections of the original polygon’s vertices from
a point source onto a surface

Projective Shadows

e Paint shadows as a texture

e Works for flat surfaces illuminated by point light
source

e Problem: compute shape of shadow

[ront -

Projective Shadows

e Project light-object edges onto plane
e Want shadow of entire object

e Theory: union of projections of individual faces =
projection of entire object

e Algorithm:
First, draw plane using specular-diffuse-ambient
components

Then, draw shadow projections (face by face) using
only ambient component

Projective Shadows

e Problem: find outline of shadow by calculating
projections of object vertices onto plane

e Example: want to project vertex V to find V’
e Plane passes through point A and has normal, n

Projective Shadows

Note: can express
projection in
homogeneous
coordinates and use
matrices

Projective Shadows for Polygon

(x. yi. z))

10

Computing Shadow Vertex

6.

11

Source at (x, y,, z,)
Vertex at (X, y, z)

Consider simple case of shadow projected onto
ground at (x,, 0,)

Translate source to origin with T(-x, -y,, -z,)

Perspective projection 1 0 00
0 1 00

M=0 0 10

0~ 0 0

Translate back Y, |

Shadow Buffer Approach

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces
e Cons: needs lots of memory

e Theory:
Establish object-light path
Other objects in object-light path = object in shadow
Otherwise, not in shadow

Shadow Buffer Approach

e Shadow buffer records object distances from
light source

e Shadow buffer element = distance of closest
object in a direction
e Rendering in two stages:

Loading shadow buffer
Rendering the scene

Loading Shadow Buffer -

e Initialize each element to 1.0

e Position a camera at light source

e Rasterize each face in scene updating pseudo-depth
e Shadow buffer tracks smallest pseudo-depth so far

“

‘ | J
/ /J. i | /""QILL]-] LII]LI
i.//// 4 iL‘F Ii‘l I-\lITI!-L I—
I. | - o -
| \ I -

Loading Shadow Buffer -

e Shadow buffer calculation is independent of eye
position

e |In animations, shadow buffer loaded once

e If eye moves, no need for recalculation

e If objects move, recalculation required

source shadow
|‘!'L|[.!'Q|'
g P
A P
/ ?_-!ﬂ‘:"
_- > ,screen and
L Fd / depth buffer
;/\ £ i

Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer
e If d[i][j] < D (other object on this path closer to
light)
point P is in shadow
set lighting using only ambient

e Otherwise, not in shadow

Other Issues

e Point light sources => simple but a little unrealistic
e Extended light sources => more realistic

e Shadow has two parts:
e Umbra (Inner part) => no light
e Penumbra (outer part) => some light

References

e Angel and Shreiner
e Hill and Kelley

