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Introduction to Shadows

Basic idea:




Introduction to Shadows




Introduction to Shadows

e Shadows make image more realistic

Important visual cues on relative positions of objects
in scene

e Rendering shadows:
Points in shadow: use only ambient component
Points NOT in shadow: use all lighting components
Simple illumination models == simple shadows

e Two methods:

Shadows as texture (projection)
Shadow buffer

e Third method used in ray-tracing



Projective Shadows

e Oldest methods
Used in flight simulators to provide visual clues

e Projection of a polygon is a polygon called a
shadow polygon

e Given a point light source and a polygon, the
vertices of the shadow polygon are the
projections of the original polygon’s vertices from
a point source onto a surface



Projective Shadows

e Paint shadows as a texture

e Works for flat surfaces illuminated by point light
source

e Problem: compute shape of shadow
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Projective Shadows

e Project light-object edges onto plane
e Want shadow of entire object

e Theory: union of projections of individual faces =
projection of entire object

e Algorithm:
First, draw plane using specular-diffuse-ambient
components

Then, draw shadow projections (face by face) using
only ambient component



Projective Shadows

e Problem: find outline of shadow by calculating
projections of object vertices onto plane

e Example: want to project vertex V to find V’
e Plane passes through point A and has normal, n



Projective Shadows

Note: can express
projection in
homogeneous
coordinates and use
matrices




Projective Shadows for Polygon

(x. yi. z))

10




Computing Shadow Vertex

6.
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Source at (x, y,, z,)
Vertex at (X, y, z)

Consider simple case of shadow projected onto
ground at (x,, 0, )

Translate source to origin with T(-x, -y,, -z,)

Perspective projection 1 0 00
0 1 00

M=0 0 10

0~ 0 0

Translate back Y, |




Shadow Buffer Approach

e Uses second depth buffer called shadow buffer
e Pros: not limited to plane surfaces
e Cons: needs lots of memory

e Theory:
Establish object-light path
Other objects in object-light path = object in shadow
Otherwise, not in shadow



Shadow Buffer Approach

e Shadow buffer records object distances from
light source

e Shadow buffer element = distance of closest
object in a direction
e Rendering in two stages:

Loading shadow buffer
Rendering the scene



Loading Shadow Buffer -

e Initialize each element to 1.0

e Position a camera at light source

e Rasterize each face in scene updating pseudo-depth
e Shadow buffer tracks smallest pseudo-depth so far
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Loading Shadow Buffer -

e Shadow buffer calculation is independent of eye
position

e |In animations, shadow buffer loaded once

e If eye moves, no need for recalculation

e If objects move, recalculation required
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Shadow Buffer (Rendering Scene)

e Render scene using camera as usual

e While rendering a pixel find:
pseudo-depth D from light source to P
Index location [i][j] in shadow buffer, to be tested
Value d[i][j] stored in shadow buffer
e If d[i][j] < D (other object on this path closer to
light)
point P is in shadow
set lighting using only ambient

e Otherwise, not in shadow



Other Issues

e Point light sources => simple but a little unrealistic
e Extended light sources => more realistic

e Shadow has two parts:
e Umbra (Inner part) => no light
e Penumbra (outer part) => some light
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