Computer Graphics
CS 543 — Lecture 8 (Part 2)
Texturing

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

The Limits of Geometric Modeling | :

e Although graphics cards can render over 10 million
polygons per second, that number is insufficient
for many phenomena

e Clouds
e @Grass

e Terrain
e Skin

e Computationally inexpensive way to add details

- : Complexity of images does
" Not affect the complexity

Of geometry processing
(transformation, clipping...)

Modeling an Orange

e Consider problem of modeling an orange (the fruit)

e Start with an orange-colored sphere
Too simple
e Replace sphere with a more complex shape

Does not capture surface characteristics (small
dimples)
Takes too many polygons to model all the dimples

Modeling an Orange (2)

e Take a picture of a real orange, scan it, and “paste”
onto simple geometric model

Known as texture mapping

e Still might not be sufficient because resulting surface
will be smooth

Simulate surface roughness: bump mapping

Three Types of Mapping

e Texture Mapping
e Paste image onto polygon

geometric model texture mapped

Three Types of Mapping -

e Environment (reflection mapping)

e Uses picture of the sky/environment for texture maps

Three Types of Mapping

e Bump mapping

e Alters normal vectors during rendering process to
simulate surface roughness

Texture Mapping

1. projection

3D geometry 2. texture lookup

Texture Representation :

Bitmap (pixel map) textures (supported by OpenGL)

e Procedural textures (used in advanced rendering

»

programs)

1,1

(11—
HEFNERN.INIL
EIENE TN EE BEW
7 o vasTMMAMESENS
EETENTS AN
E
. sENEL' @3 B
AL T 1 1 TWhe) L |
L IS T T Tl ol
HEREAEETYNEMNEL
HAHEETWMRAITEIYE T
e _dF PR

1
w

v

AN

(0,0)

Bitmap texture:

A 2D image - represented by 2D array
texture[height][width]

Each pixel (or called texel) by a unique
pair texture coordinate (s, t)

The s and t are usually normalized to

a [0,1] range

For any given (s,t) in the normalized range,
there is also a unique image value (i.e.,

a unique [red, green, blue] set)

Texture Value Lookup

e For given texture coordinates (s,t), we can find a
unigue image value from the texture map

(1,1)

|
N
T

/ /
(0,0) (0.25,0)

f \

T~—

AN

(0.5,0) (0.75,0) (1,0)

How about coordinates that are not
exactly at the intersection (pixel) positions?

A) Nearest neighbor
@) B) Linear Interpolation
C) Other filters

Map textures to surfaces -

e Establish mapping from texture to surfaces
(polygons):
- Application program needs to specify texture
coordinates for each corner of the polygon

(1,0) (1,1)

The polygon can be
in an arbitrary size

Map textures to surfaces

e Texture mapping is performed in rasterization

(0,1) (1,1) For each pixel that is to be painted, its
texture coordinates (s, t) are determined
(interpolated) based on the corners’
texture coordinates (why not just
interpolate the color?)

The interpolated texture coordinates
are then used to perform texture lookup

(0,0) (1,0)

Fix texture size -

e Ifthe dimensions of the texture map are not
power of 2, you can

1) Pad zeros 2) Scale the Image

Remember to adjust the texture coordinates
for your polygon corners — you don’t want to
Include black texels in your final picture

Where does mapping take place?

e Mapping techniques are implemented at the end of
the rendering pipeline

e Very efficient because few polygons make it past the
clipper

Geome_try Rasterization Fragmgnt Frame
processing processing buffer

Pixel /

processing

Verlices —

Pixels ————

14

Texture Mapping s

A

parametric coordinates
(for modeling object shape)

- {J

-

texture coordinates

. window coordinates
world coordinates

15

Mapping Functions :

e Basic problem is how to find the maps

e Consider mapping from texture coordinates to a
point a surface

e Appear to need three functions

X =X(s,1)
y =Y.t (|
Z = 2(s,t)

e But we really want
to go the other way

16

Backward Mapping

e We really want to go backwards

Given a pixel, we want to know to which point on an
object it corresponds

Given a point on an object, we want to know to
which point in the texture it corresponds

e Need a map of the form
s =s(X,Y,2)
t=1t(x,y,z)
e Such functions are difficult to find in general

Texture Mapping and the OpenGL | ¢
Pipeline

e Images and geometry flow through separate
pipelines that join during fragment processing

“complex” textures do not affect geometric
complexity

Fragment
processor

vertices ——{ geometry pipeline \

Image R

pixel pipeline

18

Basic Stragegy

Three steps to applying a texture
specify the texture

read or generate image

assign to texture

enable texturing
assign texture coordinates to vertices
e Proper mapping function is left to application
specify texture parameters

wrapping, filtering

19

Specifying a Texture Image

e Define a texture image from an array of
texels (texture elements) in CPU memory
Glubyte my texels[512][512];

e Define as any other pixel map
Scanned image
Generate by application code

e Enable texture mapping
glEnable(GL_TEXTURE_ 2D)

OpenGL supports 1-4 dimensional texture maps

20

Define Image as a Texture .

glTexImage2D(target, level, components,
w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_2D
level - used for mipmapping (discussed later)
components: elements per texel

w, h: width and height of texels in pixels
border: used for smoothing (discussed later)
format and type: describe texels

texels: pointer to texel array

gl TexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, O,
GL_RGB, GL_UNSIGNED BYTE, my texels):

21

Mapping a Texture

e Based on parametric texture coordinates
e glTexCoord*() specified at each vertex

Texture Space Object Space
(s, t) = (0.2, 0.8)

Typical Code

offset = O;

GLuint vPosition = glGetAttribLocation(program, *vPosition");

glEnableVertexAttribArray(vPosition);

glVertexAttribPointer(vPosition, 4, GL FLOAT, GL_FALSE,
O0,BUFFER_OFFSET (offset));

offset += sizeof(points);
GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");
glEnableVertexAttribArray(vTexCoord);
glVertexAttribPointer(vTexCoord, 2,GL_FLOAT,
GL_FALSE, 0O, BUFFER_OFFSET(offset));

23

Texture Parameters

e OpenGL has a variety of parameters that determine
how texture is applied

Wrapping parameters determine what happens if sand t
are outside the (0,1) range

Filter modes allow us to use area averaging instead of
point samples

Mipmapping allows us to use textures at multiple
resolutions

Environment parameters determine how texture mapping
interacts with shading

24

Wrapping Mode

Clamping:ifs,t>1use 1, ifs,t <O use O

Wrapping: use S,t modulo 1

glTexParameteri(GL_TEXTURE_2D,
GL TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL TEXTURE_WRAP_T, GL_REPEAT)

GL REPEAT GL CLAMP
texture wrapping wrapping

25 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

o000
o0o
o0

Magnification and Minification

More than one texel can cover a pixel (minification) or

more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering

(2 x 2 filter) to obtain texture values

L
] \t\\
Texture Polygon Texture Polygon
Magnification Minification

26

Filter Modes

Modes determined by
glTexParameteri(target, type, mode)

gl TexParameteri (GL_TEXTURE_ 2D, GL TEXURE_MAG _FILTER,
GL NEAREST):

glTexParameteri (GL_TEXTURE_ 2D, GL TEXURE_MIN_FILTER,
GL LINEAR):

Note that linear filtering requires a border of an
extra texel for filtering at edges (border = 1)

27

CrentL

Texture mapping parameters |

OpenGL texture filtering:

2) Linear interpolate the neighbors

1) Nearest Neighbor (lower (better quality, slower)

image quality)

6) 0
glTexParameteri(GL_TEXTURE_2D, glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_MIN_FILTER, GL_NEAREST); GL_TEXTURE_MIN_FILTER,

GL_LINEAR)

~

Or GL_TEXTURE_MAX_FILTER

Mipmapped Textures

e Mipmapping allows for prefiltered texture maps of
decreasing resolutions

e Lessens interpolation errors for smaller textured
objects

e Declare mipmap level during texture definition
glTexImage2D(GL _TEXTURE_*D, level, ..)

29 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

o000
ee0o
eeoo
X
o0

Example :
point linear
: filtering
sampling
mipmapped mipmapped
pom.t linear
sampling filtering
30

Graphics 6E © Addison-Wesley 2012

Texture Functions

e Controls how texture is applied

o glTexEnv{fi}[Vv](GL TEXTURE _ENV, prop,
param)

e GL TEXTURE ENV_MODE modes

GL_MODULATE: multiply texture and object color

GL _BLEND: linear combination of texture and object color

GL_REPLACE: use only texture color
GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE) ;

e E.g: glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV_MODE,
);

31

Enable (Disable) Textures

e Enable texture — glEnable(GL _TEXTURE_2D)
e Disable texture — glDisable(GL_TEXTURE_2D)

e Remember to disable texture mapping when
you draw non-textured polygons

Using Texture Objects

1. specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

supply texture coordinates for vertex

coordinates can also be generated

W N

® N O W

33

Applying Textures

e Textures are applied during fragments shading by a
sampler

e Samplers return a texture color from a texture object

In vec4 color; //color from rasterizer
In vec2 texCoord; //texure coordinate from rasterizer
uniform sampler2D texture; //texture object from application

void main() {
gl_FragColor = color * texture2D(texture, texCoord);

}

34

Vertex Shader

e Usually vertex shader will output texture coordinates
to be rasterized

e Must do all other standard tasks too

Compute vertex position
Compute vertex color if needed

in vec4 vPosition; //vertex position in object coordinates
in vec4 vColor; //vertex color from application
in vec2 vTexCoord; //texture coordinate from application

out vec4 color; //output color to be interpolated
out vec2 texCoord; //output tex coordinate to be interpolated

35

Adding Texture Coordinates

void quad(inta, intb, intc, intd)

{
guad_colors[Index] = colors]a];
points[Index] = vertices|a];
tex_coords|Index] = vec2(0.0, 0.0);
Index++;
guad_colors[Index] = colors]b];
points[Index] = vertices|b];
tex_coords[Index] = vec2(0.0, 1.0);
Index++;

/I other vertices

}

36 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Texture Object

GLuint textures[1];
glGenTextures(1, textures);

glBindTexture(GL_TEXTURE_ 2D, textures|0]);
glTeximage2D(GL_TEXTURE 2D, 0, GL_RGB, TextureSize,
TextureSize, 0, GL_RGB, GL_UNSIGNED BYTE, image);
glTexParameterf(GL_ TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_REPEAT);
glTexParameterf(GL_ TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D,
GL _TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D,
GL _TEXTURE_MIN_FILTER, GL_NEAREST);
glActiveTexture(GL_TEXTUREO);

37 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Linking with Shaders

GLuint vTexCoord = glGetAttribLocation(program, "vTexCoord");

glEnableVertexAttribArray(vTiexCoord);

glVertexAttribPointer(vTexCoord, 2, GL_FLOAT, GL_FALSE, 0,
BUFFER_OFFSET (offset));

I/ Set the value of the fragment shader texture sampler variable
Il ("texture") to the the appropriate texture unit. In this case,

Il zero, for GL_TEXTUREOQO which was previously set by calling
Il glActiveTexture().

glUniform1i(glGetUniformLocation(program, "texture"), 0);

38 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Other Stuff

e Wrapping texture onto curved surfaces. E.g. cylinder,
can, etc

0-6 Z—1
S =) t = 5
eb_ga L, — L,
e Wrapping texture onto sphere
-0, S
S = =
6, -6, /A

e Bump mapping: perturb surface normal by a quantity
proportional to texture

Bump Mapping

ePerturb normal for each fragment
eStore perturbation as textures

40

Two-part mapping

e One solution to mapping problem is to first map
texture to a simple intermediate surface

e Example: map to cylinder

D

(

5

41

Cylindrical Mapping

parametric cylinder

X =7rCcos 2t u
y =rsin 2nu
z =Vv/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

t=v
maps from texture Space

42

Spherical Map

We can use a parametric sphere

X =T COS 21U
y =T sin 21U cos 2nv
Z =r sin 27U Ssin 2nv

in a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

43

Box Mapping

e Easy to use with simple orthographic projection

e Also used in environment maps

44

Ll

Back

Left

Bottom

Right

Top

Front

Second Mapping

e Map from intermediate object to actual object

actual intermediate

e

45

Aliasing

e Point sampling of the texture can lead to aliasing
errors

miss blue stripes point samples in u,v

(or x,y,z) space
//\

()

5 U
point samples in texture space

46

-
P <

Area Averaging

A better but slower option is to use area averaging

Yy X
f A

1] —

|

I|'|I R \
- i N

\

pixel

preimage
Z

Note that preimage of pixel is curved

47

Introduction

e Environmental mapping is way to create
the appearance of highly reflective surfaces
without ray tracing which requires global
calculations

e Examples: The Abyss, Terminator 2

e Is a form of texture mapping
Supported by OpenGL and Cg

48

49

Environment Map

Use reflection vector to locate texture in cube map

50

Reflecting the Environment

.y

51

Mapping to a Sphere

52

Cube Map

a
A

/

53

Cube Maps

eWe can form a cube map texture by defining six
2D texture maps that correspond to sides of a box

eSupported by OpenGL

eAlso supported in GLSL through cubemap sampler
vec4 texColor = textureCube(mycube, texcoord);

eTexture coordinates must be 3D

54

Normalization Maps

eCube maps can be viewed as lookup tables 1-4
dimensional variables

eVector from origin is pointer into table

eExample: store normalized value of vector in the
map
Same for all points on that vector

Use “normalization map” instead of normalization
function

Lookup replaces sqgrt, mults and adds

Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 55

References

e Angel and Shreiner
e Hill and Kelley,

