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Perspective Projection

e Projection — map the object from 3D space to
2D screen
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Perspective Projection: Classical
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Perspective Projection: Classical

e So (x*,y*) projection of point, (x,y,z) unto near plane
N is given as:

(X*,y*)=£XN,yNj

e Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for
a near planeatN=17?
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Pseudodepth

e Classical perspective projection projects (x,y) coordinates to (x*, y*), drops z
coordinates

Map to same (X*,y*)

Projectors ;
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e But we need z to find closest object (depth testing)
e Actual z distance of P from eye could be large and cumbersome

distance:\/(x2+y ‘+z 2)

e Introduce pseudodepth: Transform actual z distance to a range of z = [-1,1],
which can be used for depth testing



Perspective Transformation

e Perspective transformation maps actual z distance of
perspective view volume to range of —1 to 1 (Pseudodepth)
for canonical view volume
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We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b



Perspective Transformation

e We want to transform viewing frustum
volume into canonical view volume
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Perspective Transformation using
Pseudodepth
[ N N az +b]
Y T

e Choose a, b so as z varies from Near to Far, pseudodepth

varies from =1 to 1 (canonical cube)
/ Actual view
volume

e Boundary conditions
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Transformation of z: Solve foraand b

e Solving: b

—Z

Z*

e Use boundary conditions
e z*=-1whenz=-N......... (1)
e z*=1whenz=-F......... (2)

e Set up simultaneous equations

_1:—aN+b

— N =-aN +b......(1)

1:—aF+b

—F =—aF +b.....(2)




Transformation of z: Solve foraand b

e Add egns (2) and (3)
F+N=aN-aF

_F+N _ —(F+N)
N-F F-N

e Now put (4) back into (3)
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e Put solution for a back into egn (3)
N =aN —b........(3)
N -NEF+N)
F—N
b N _—N(E+N)
F—N
L p_—N(F-N)-N(F+N) —-NF-N’-NF+N”_—2NF
- F-N - F—N ~ F-N
e SO
a:—(F+N) b:—ZFN

F-N F—N



What does this mean?

e Original point z in original view volume, transformed
into z* in canonical view volume

_az+b
~z

Z*

e Wwhere
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Homogenous Coordinates

e Want to express projection transform as 4x4 matrix
e Previously, homogeneous coordinates of
P = (Px,Py,Pz) => (Px,Py,Pz,1)
e Introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)
e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w =3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term



Perspective Projection Matrix

e Recall Perspective Transform
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Perspective Projection Matrix

N
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e In perspective transform matrix, already solved for a
and b:

e So, we have transform matrix to transform z
values
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Perspective Projection
e Not done yet!! Can now transform z!
e Also need to transform the x = (xmin, xmax) and y = (ymin, ymax)
ranges of viewing frustum to [-1, 1]
e Similar to glOrtho, we need to translate and scale previous matrix
along x and y to get final projection transform matrix
e we translate by Ay
—(right + left)/2 in x ‘o
-(top + bottom)/2 iny P
e Scale by:
2/(right — left) in x
2/(top — bottom) iny =x
1 -1
bottom
left right



Perspective Projection

e Translate along x and y to line up center with origin of CVV
—(right + left)/2 in x
-(top + bottom)/2 iny

e Multiply by translation matrix:

0 — (right + left )/2

1 0 Ay
0 1 0 —(top + bottom )/2 top
0O 0 1 0
0O 0 O 1
_— X
Line up centers /
Along x and y 1 -1
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Perspective Projection
e To bring view volume size down to size of of CVV, scale by
2/(right — left) in x
2/(top — bottom) iny
e Multiply by scale matrix:
2
right left 00 R4
2 top
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top —bottom
0 0 10 \ I
0 0 01
_— X
Scale size down /
along x and 1 -1
9 Y bottom ’ \

left right
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glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane



Perspective Transformation

e After perspective transformation, viewing
frustum volume is transformed into canonical
view volume

(1, 1, -1)

P
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Geometric Nature of Perspective 4
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform
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Normalization Transformation E
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Implementation

e Set modelview and projection matrices in application program
e Pass matrices to shader

void display( ){
model _view
projection

LookAt(eye, at, up);
Ortho(left, right, bottom,top, near, far);

// pass model view and projection matrices to shader
gluniformMatrix4fv(matrix_loc, 1, GL _TRUE, model view);
gluniformMatrix4fv(projection loc, 1, GL TRUE, projection);



Implementation

e And the corresponding shader

In vec4 vPosition;

in vec4 vColor;

Out vec4 color;

uniform mat4 model view;
Uniform mat4 projection;

void main( )

{
gl Position = projection*model view*vPosition;
color = vColor;
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