Computer Graphics
CS 543 — Lecture 6 (Part 3)
Projection (Part 2)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Perspective Projection

e Projection — map the object from 3D space to
2D screen

Perspective()
Frustrum() /5,

Perspective Projection: Classical

Projectors \

¥~ Object in 3 space

e Side view:

Projected image

Ao

I I VRP
Projection plane ~ o
LY (X,¥,2)
- Based on similar triangles:
(X’,y’,Z’)//,/’/
(0,0,0) 9 _y _ =N
e > Z Yy - V4

[N \ |
N
/ -7 I:> Yy = Yy X—

N 2

Eye (COP) Near Plane
(VOP)

Perspective Projection: Classical

e So (x*,y*) projection of point, (x,y,z) unto near plane
N is given as:

(X*,y*)=£XN,yNj

e Numerical example:

Q. Where on the viewplane does P = (1, 0.5, -1.5) lie for
a near planeatN=17?

N N 1 1
X y*)=| X, ~[1x2 05x— | = (0.666,0.333
(x,y) [7 y—z} (X1.5 X1.5) ()

Pseudodepth

e Classical perspective projection projects (x,y) coordinates to (x*, y*), drops z
coordinates

Map to same (X*,y*)

Projectors ;
% Compare their z values

“¥— Object in 3 space

Projected image

\VRP (0,0,0)

COP

v

/N

e But we need z to find closest object (depth testing)
e Actual z distance of P from eye could be large and cumbersome

distance:\/(x2+y ‘+z 2)

e Introduce pseudodepth: Transform actual z distance to a range of z = [-1,1],
which can be used for depth testing

Perspective Transformation

e Perspective transformation maps actual z distance of
perspective view volume to range of —1 to 1 (Pseudodepth)
for canonical view volume

/

) Actual depth

Actual view volume

n
»

Neax

1

‘Pseudodepth

l

e~

Far

Canonical view volume

We want perspective
Transformation and
NOT classical projection!!

Set scaling z
Pseudodepth = az + b
Next solve for a and b

Perspective Transformation

e We want to transform viewing frustum
volume into canonical view volume

(-1, -1, 1)

(11 11

P

=

Canonical View Volume

_1)

Perspective Transformation using
Pseudodepth
[N N az +b]
Y T

e Choose a, b so as z varies from Near to Far, pseudodepth

varies from =1 to 1 (canonical cube)
/ Actual view
volume

e Boundary conditions

(X*, y*,z *)

) Actual depth

z* =-1whenz=-N >
z*=1whenz=-F
NeéF\\\\\\\\\\ Far
APseudodeptt]
Canonical view >
volume Z*

Transformation of z: Solve foraand b

e Solving: b

—Z

Z*

e Use boundary conditions
e z*=-1whenz=-N......... (1)
e z*=1whenz=-F......... (2)

e Set up simultaneous equations

_1:—aN+b

— N =-aN +b......(1)

1:—aF+b

—F =—aF +b.....(2)

Transformation of z: Solve foraand b

e Add egns (2) and (3)
F+N=aN-aF

_F+N _ —(F+N)
N-F F-N

e Now put (4) back into (3)

= a

000
0000
0000
3
Transformation of z: Solve foraand b | @
e Put solution for a back into egn (3)
N =aN —b........(3)
N -NEF+N)
F—N
b N _—N(E+N)
F—N
L p_—N(F-N)-N(F+N) —-NF-N’-NF+N”_—2NF
- F-N - F—N ~ F-N
e SO
a:—(F+N) b:—ZFN

F-N F—N

What does this mean?

e Original point z in original view volume, transformed
into z* in canonical view volume

_az+b
~z

Z*

e Wwhere

a:—(F+N)
F-N

Original

/

vertex z value

Transformed

Near

vertex z* value

Actual view
volume

Far

Canonical view
volume

Homogenous Coordinates

e Want to express projection transform as 4x4 matrix
e Previously, homogeneous coordinates of
P = (Px,Py,Pz) => (Px,Py,Pz,1)
e Introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)
e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w =3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term

Perspective Projection Matrix

e Recall Perspective Transform

N
o y* 2%)=| x y ’az +b
() N

-7 -7 -1
. N N az+b
e We have: ._, N y*=y— S
-7 — 27 -7
e |n matrix form: N
N 0 0 0) wx WNX X _7
0 N 0 O} wy WNy y N
= = _
0 0 a by wz w(az +b) 2z +Zb
0 0O -1 O0O){ w — WZ _ 7
1
Perspective Original Transformed Transformed Vertex
Transform Matrix vertex Vertex

after dividing by 4t term

Perspective Projection Matrix

N
N 0 0 O0)wP, WNP o
0 N 0 0w, | | wwe, | |y
0 0 a b|wP,| |w(aP,+b) 2 b
0 0 -1 o)l w - WP, =
1
—(F+N —
A= E:—N) b:FZ_Fs

e In perspective transform matrix, already solved for a
and b:

e So, we have transform matrix to transform z
values

(Y X
o0o
o0
O
Perspective Projection
e Not done yet!! Can now transform z!
e Also need to transform the x = (xmin, xmax) and y = (ymin, ymax)
ranges of viewing frustum to [-1, 1]
e Similar to glOrtho, we need to translate and scale previous matrix
along x and y to get final projection transform matrix
e we translate by Ay
—(right + left)/2 in x ‘o
-(top + bottom)/2 iny P
e Scale by:
2/(right — left) in x
2/(top — bottom) iny =x
1 -1
bottom
left right

Perspective Projection

e Translate along x and y to line up center with origin of CVV
—(right + left)/2 in x
-(top + bottom)/2 iny

e Multiply by translation matrix:

0 — (right + left)/2

1 0 Ay
0 1 0 —(top + bottom)/2 top
0O 0 1 0
0O 0 O 1
_— X
Line up centers /
Along x and y 1 -1
botton

left right

000
000
o0
®
Perspective Projection
e To bring view volume size down to size of of CVV, scale by
2/(right — left) in x
2/(top — bottom) iny
e Multiply by scale matrix:
2
right left 00 R4
2 top
— - 00
top —bottom
0 0 10 \ I
0 0 01
_— X
Scale size down /
along x and 1 -1
9 Y bottom ’ \

left right

00
0000
0000
00
[] [] [] [] ..
O
Perspective Projection Matrix |
Previous
Perspective
Transform
Scale Translate Matrix
2 0 O
right — left 1 0 O —(right +Ieft)/2 N 0 0 0
2 0 0 1 0 - (top + bottom)/2 0O N O O
X X
top — bottom 0 0 1 0 0O 0 a b
0 0 1 0 0 0 1 0 0 -1 0
0 0 0 1
2N 0 right + left
X max— xmin right — left
0 2N top + bottom
|:> top —bottom top —bottom Final Perspective
0 0 -(F+N) -2FN Transform Matrix
F-N F-N
0 0 -1 0

glFrustum(left, right, bottom, top, N, F) N = near plane, F = far plane

Perspective Transformation

e After perspective transformation, viewing
frustum volume is transformed into canonical
view volume

(1, 1, -1)

P

(-1, -1, 1) >

Canonical View Volume

Geometric Nature of Perspective 4
Transform

a) Lines through eye map into lines parallel to z axis after transform

b) Lines perpendicular to z axis map to lines perp to z axis after transform

Y

Normalization Transformation E

distorted object
Z=-X projects correctly

Lo

\ z = -far
Nl L

/ \)< Z = -near /
original clipping 34, /]

- - - z= i
volume original object new clipping
volume

Implementation

e Set modelview and projection matrices in application program
e Pass matrices to shader

void display(){
model _view
projection

LookAt(eye, at, up);
Ortho(left, right, bottom,top, near, far);

// pass model view and projection matrices to shader
gluniformMatrix4fv(matrix_loc, 1, GL _TRUE, model view);
gluniformMatrix4fv(projection loc, 1, GL TRUE, projection);

Implementation

e And the corresponding shader

In vec4 vPosition;

in vec4 vColor;

Out vec4 color;

uniform mat4 model view;
Uniform mat4 projection;

void main()

{
gl Position = projection*model view*vPosition;
color = vColor;

References

e Angel and Shreiner, Chapter 4

e Hill and Kelley, Computer Graphics using OpenGL, 3"
edition

