Computer Graphics
CS 543 — Lecture 5 (Part 2)
Implementing Transformations

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Objectives

e Learn how to implement transformations in
OpenGL

Rotation
Translation
Scaling

e Introduce mat,h and vec.h transformations
Model-view
Projection

Pre 3.10penGL Matrices

e In OpenGL matrices were part of the state

e Multiple types
Model-View (GL_MODELVIEW)
Projection (GL_PROJECT ION)
Texture (GL_TEXTURE)
Color(GL_COLOR)

e Single set of functions for manipulation

e Select which to manipulated by
gIMatrixMode(GL_MODELVIEW);
gIMatrixMode(GL_PROJECTION) ;

Current Transformation Matrix
(CTM)

e Conceptually there is a 4 x 4 homogeneous coordinate
matrix, the current transformation matrix (CTM) that is
part of the state and is applied to all vertices that pass
down the pipeline

e The CTM is defined in the user program and loaded
into a transformation unit

l C
p’=Cp
vertices > CTM > vertices

CTM operations

e The CTM can be altered either by loading a new CTM
or by postmutiplication

Load an identity matrix: C « |
Load an arbitrary matrix: C « M

L oad a translation matrix: C <« T
Load a rotation matrix: C <« R
Load a scaling matrix: C <~ S

Postmultiply by an arbitrary matrix: C < CM
Postmultiply by a translation matrix: C <~ CT
Postmultiply by a rotation matrix: C <« C R
Postmultiply by a scaling matrix: C« C S

Rotation about a Fixed Point

Start with identity matrix: C < |
Move fixed point to origin: C < CT
Rotate: C <~ CR

Move fixed point back: C <~ CT !

Result: C=TR T ! which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

Reversing the Order

e WewantC=T1RT
e So we must do operations in the following order

C«1
C«CT
C«CR
C«CT

e Each operation corresponds to one function call in

the program.
e Note: |ast operation specified is first executed in

program

CTM in OpenGL

e Previously, OpenGL had a model-view and a
projection matrix in the pipeline that were
concatenated together to form the CTM

e Useful!!
e So, we will emulate this process in our application

Vertices ‘ o Vertices
- Model-view ——m» Projection e

| |
|
CTM

Rotation, Translation, Scaling

Create an identity matrix:

matd m = ldentity(Q);

Multiply on right by rotation matrix of theta in degrees
where (VX, vy, Vvz) define axis of rotation
mat4 r = Rotate(theta, vx, vy, Vvz)
m = m*r;
Do same with translation and scaling:

mat4 s Scale(sx, sy, sz)
mat4 t = Transalate(dx, dy, dz);
m = m*s*t;

Transformation matrices Formed?

e Converts all transforms (translate, scale, rotate) to 4x4 matrix
e Put 4x4 transform matrix into modelview matrix
e How? multiplies current modelview matrix by 4x4 matrix

e Example
CTM Matrix
1 0 0 O
mat4 m = ldentity(); =) 0100
O 010
0O 0 0 1

Transformation matrices Formed?

mat4d m = ldentity();
mat4 t = Translate(3,6,4);

m = m*t;
Identity Translation
Matrix Matrix CTM Matrix
1 000) (100 3 1 00 3
00100/ _(0106|=|010F6
0O 010 0O 01 4 0 01 4
0 0 0 1 0 0 01 0 0 0 1

Transformation matrices Formed?

e Then what?

mat4d m =
mat4 t =
m = m*t;

colorcube();

-

Identity();
Translate(3,6,4); ‘

=X

e

N

CTM Matrix

1 0

0 1
0 O
0 O

0

0
1
0

3

6
A
1

Original
vertex

e N

000
0000
0000
o000
CY)
o
4
!
|5
1
Transformed
vertex

Each vertex of cube is multiplied by CTM matrix

to get translated vertex

Transformation matrices Formed?

e Consider following code snipet

mat4d m = ldentity();
mat4 s = Scale(1,2,3);

m = m*s;
1 00 0) (1 00O 1000
0100[,/0200 =1]02¢00¢0
0010 0030 0 030
0001 0 001 0 0 01

Transformation matrices Formed?

e Then what?

CTM Matrix
mat4d m = ldentity(); 1 0 0 O 1 1
mat4 s = Scale(1,2,3);
n = mrs =) |0 200 |1 |2
colorcube(); 0 0 30 1 3
000 1) 1 I
f \
A //ﬁ
Original Transformed
7 vertex vertex
7] < i Each vertex of cube is multiplied by modelview
1 * matrix to get scaled vertex position

—~+

Transformation matrices Formed?

e What of gltranslate, then scale, then

e Just multiply them together. Evaluated in reverse order!! E.g:

mat4d m =
mat4d s =
mat4d t =
m = m*s*t;

o o o B+

0
1
0

0

Identity

Identity();

Scale(1,2,3);

Translate(3,6,4);

0
0
1

0

Matrix

R O O O

o o o -

0
2
0

0

w O O

0

Scale

Matrix

R O O O

0
0
1

o O O =
o o +— O

0

Translate
Matrix

R B~ O W

1 0 0 3
0 2 0 12
0 0 3 12
0O 00 1

Final CTM Matrix

000
0000
0000
o000
:o
Transformation matrices Formed?
e Then what?
mat4 m = ldentity(Q); Modelview Matrix
mat4 s = Scale(1,2,3);
mat4 t = Translate(3,6,4); 100 3 1 4
m = m*s*t; ~02012 1| |14
colorcube(); 0 0 3 12 % 1 115
0 0 0 1 1 1
{ / !
_ Original Transformed
/ vertex vertex
=X
,/, Each vertex of cube is multiplied by modelview

% matrix to get scaled vertex position

Example

e Rotation about z axis by 30 degrees about a fixed point
(1.0, 2.0, 3.0)

mat 4 m = ldentity();

m = Translate(1.0, 2.0, 3.0)*
Rotate(30.0, 0.0, 0.0, 1.0)*
Translate(-1.0, -2.0, -3.0);

e Remember last matrix specified in program (i.e.
translate matrix in example) is first applied

Arbitrary Matrices

e Can multiply by matrices from transformation
commands (Translate, Rotate, Scale) defined in the
application program

e Can also load CTM with arbitrary 4x4 matrices

e Matrices are stored as one dimensional array of 16
elements that are components of desired 4 x 4
matrix

Matrix Stacks

e In many situations we want to save
transformation matrices for use later

Traversing hierarchical data structures (Chapter 8)
Avoiding state changes when executing display lists

e Pre 3.1 OpenGL maintained stacks for each type of
matrix

e Easy to create the same functionality with a
simple stack class

Reading Back State

e Can also access OpenGL variables (and other parts of
the state) by guery functions

glGetlntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
gllskEnabled

Using Transformations

e Example: use idle function to rotate a cube and mouse
function to change direction of rotation

e Start with program that draws cube as before
Centered at origin
Sides aligned with axes

main.cC

void main(int argc, char **argv)

{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB |

GLUT_DEPTH);

glutinitWindowSize(500, 500);
glutCreateWindow(''colorcube™);
glutReshapeFunc(myReshape) ;
glutDisplayFunc(display);
glutldleFunc(spinCube);
glutMouseFunc(mouse) ;
glEnable(GL_DEPTH _TEST);
glutMainLoop();

Idle and Mouse callbacks

voild spinCube()

{
thetaJaxis] += 2.0;

1T(thetaJaxis] > 360.0) thetaJaxis] -= 360.0;
glutPostRedisplay();
by

void mouse(int btn, iInt state, Int X, Int y)

1
1T(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)

axis = 0O;

1T(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
axis = 1;

1T(btn==GLUT_RIGHT _BUTTON && state == GLUT_DOWN)
axis = 2;

Display callback

 We can form matrix (CTM) in application and send to
shader and let shader do the rotation

e or we can send the angle and axis to the shader and let
the shader form the transformation matrix and then do
the rotation

* More efficient than transforming data in application and
resending the data

void display()

{
glClear(GL_COLOR_BUFFER BIT | GL_DEPTH BUFFER BIT);
gluniform(.); //or gluniformMatrix

glDrawArrays(..);
glutSwapBuffers();

}

Using the Model-view Matrix

Vertices Vertices
- Model-view ——®» Projection -~

| |
|
CTM

e In OpenGL the model-view matrix is used to
Position camera (using LookAt function)
Transform 3D models

e The projection matrix used to define view volume
and select a camera lens

e Although these matrices no longer part of OpenGL
state, good to create them in our applications

3D? Interfaces

e One of the major problems in interactive computer
graphics is how to use two-dimensional devices such as
a mouse to interface with three dimensional obejcts

e Example: how to form an instance matrix?
e Some alternatives

Virtual trackball

3D input devices such as the spaceball

Use areas of the screen

Distance from center controls angle, position, scale
depending on mouse button depressed

GLUI

e User Interface Library by Paul Rademacher
e Provides sophisticated controls and menus
e Not used in this class/optional

: GLUI M [=] E3
Static Text | Listbox 1 [Option 3 J | _Rollout (open) |
- Panel Listhox 2 Op'(lon 1 Edittext I Hi there!

Radio Group Edittext (int)|123

¢ Radio Button 1 .
¢ Radio Button 2 @ @ Eitiex (loa)[23.124 Virtual trackball

¢« Radio Button 3 : : =
Rotation 1 Rotation 2 Spinner (mt)] €335 5|
[v Checkbox 1

= Checkbox 2 '_}. \ .Spinner (ﬂoat)|984.56 =

Button | \/ \/

e — L Rollout (closed +

Another Button Translation XY Translation 2 () I

* Another closed rollout + |/

Yet Another Button | ’
—

\/

Translation X Translation Y

References

e Angel and Shreiner, Chapter 3
e Hill and Kelley, appendix 4

