Computer Graphics CS 543 – Lecture 4 (Part 3) Introduction to Transformations (Part 2)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Transformations

- Transformation changes an objects:
 - Position (translation)
 - Size (scaling)
 - Orientation (rotation)
 - Shapes (shear)
- Introduce first in 2D or (x,y), build intuition
- Later, talk about 3D
- Transform object by applying sequence of matrix multiplications to object vertices

Transformations in OpenGL

- Pre 3.0 OpenGL had a set of transformation functions (now deprecated)
 - glTranslate()
 - glRotate()
 - glScale()

Transformations in OpenGL

- OpenGL would previously receive transform commands, maintain concatenations of transform matrices as modelview matrix
- No longer
- Programmer *may* now choose to maintain modelview or NOT!

Transformations in OpenGL

- Three choices
 - Application code
 - GLSL functions
 - vec.h and mat.h

- All transformations can be performed using matrix/vector multiplication
- Allows pre-multiplication of all matrices
- Note: point (x,y) needs to be represented as (x,y,1), also called Homogeneous coordinates

Homogenous Coordinates

Homogeneous coordinates representation of point

$$P = (Px,Py,Pz) => (Px,Py,Pz,1)$$

• We could introduce arbitrary scaling factor, w, so that

$$P = (wPx, wPy, wPz, w)$$
 (**Note:** w is non-zero)

- For example, the point P = (2,4,6) can be expressed as
 - (2,4,6,1)
 - or (4,8,12,2) where w=2
 - or (6,12,18,3) where w = 3, or....
- To convert from homogeneous back to ordinary coordinates, first divide all four terms by w and discard 4th term

Homogeneous Coordinates and Computer Graphics

- Homogeneous coordinates are key in graphics
 - Transformations (rotation, translation, scaling) can be implemented with matrix multiplications using 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations

- In OpenGL, objects/scene initially defined in world frame
- Transformations (translate, scale, rotate) applied to objects in world frame

- After we define a camera (eye) position
- We then represent objects in camera frame (origin at eye position)

objects moved from world frame to camera frame using

A transformation maps points to other points and/or vectors to other vectors

- Rigid body transformations: rotation, translation, scaling, shear
- Line preserving: important in graphics since we can
 - 1. Transform endpoints of line segments
 - 2. Draw line segment between the transformed endpoints

• We use a column matrix (2x1 matrix) to represent a 2D point

$$\begin{pmatrix} x \\ y \end{pmatrix}$$

• General form of transformation of a point (x,y) to (x',y') can be written as:

$$x' = ax + by + c$$

$$y' = dx + ey + f$$

$$x' = \begin{pmatrix} x \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Translation

- To reposition a point along a straight line
- Given point (x,y) and translation distance (t_x, t_y)
- The new point: (x',y')

$$x'=x+t_x$$
$$y'=y+t_y$$

(x',y')
(x,y)

or

$$P' = P + T$$
 where $P' = \begin{pmatrix} x' \\ y' \end{pmatrix}$ $P = \begin{pmatrix} x \\ y \end{pmatrix}$ $T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$

3x3 2D Translation Matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

use 3x1 vector

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Note: it becomes a matrix-vector multiplication

•How to translate an object with multiple vertices?

3D Translation

• Move each vertex by same distance $d = (d_x, d_y, d_z)$

object

translation: every point displaced by same vector

Transforms in 3D

- 2D: 3x3 matrix multiplication
- 3D: 4x4 matrix multiplication: homogenous coordinates
- Again: transform object = transform each vertice
- General form:

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 Xform of P
$$\begin{pmatrix} Q_x \\ Q_y \\ Q_z \\ 1 \end{pmatrix} = M \begin{pmatrix} P_x \\ P_y \\ P_z \\ 1 \end{pmatrix}$$

*Now, 3D:
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$$
translate(tx,ty,tz)

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

■Where: x' = x.1 + y.0 + z.0 + tx.1 = x + tx, ... etc

■Scale: Alter object size by scaling factor (s_x, s_y). i.e

$$x' = x \cdot Sx$$

 $y' = y \cdot Sy$

$$Sx = 2$$
, $Sy = 2$

2D Scaling Matrix

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} Sx & 0 \\ 0 & Sy \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Scaling

Expand or contract along each axis (fixed point of origin)

$$\mathbf{x}' = \mathbf{s}_{x} \mathbf{x}$$

$$\mathbf{y}' = \mathbf{s}_{y} \mathbf{x}$$

$$\mathbf{z}' = \mathbf{s}_{z} \mathbf{x}$$

$$\mathbf{p}' = \mathbf{S} \mathbf{p}$$

$$\mathbf{S} = \mathbf{S}(\mathbf{s}_{x}, \mathbf{s}_{y}, \mathbf{s}_{z}) = \begin{bmatrix} s_{x} & 0 & 0 & 0 \\ 0 & s_{y} & 0 & 0 \\ 0 & 0 & s_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4x4 3D Scaling Matrix

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} Sx & 0 & 0 \\ 0 & Sy & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$
 Scale(Sx,Sy,Sz) •Example:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
 small cube (sides = 0).

•If
$$Sx = Sy = Sz = 0.5$$

- •Can scale:
- big cube (sides = 1) to small cube (sides = 0.5)

- Y coordinates are unaffected, but x cordinates are translated linearly with y
- That is:

$$x' = x + y * h$$

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & h & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

■h is fraction of y to be added to x

3D Shear

Reflection

corresponds to negative scale factors

References

- Angel and Shreiner
- Hill and Kelley

