Computer Graphics
CS 543 — Lecture 4 (Part 3)
Introduction to Transformations (Part 2)

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

Introduction to Transformations

e Transformation changes an objects:
Position (translation)
Size (scaling)
Orientation (rotation)

Shapes (shear)
e Introduce firstin 2D or (x,y), build intuition

e Later, talk about 3D

e Transform object by applying sequence of matrix
multiplications to object vertices

Transformations in OpenGL

e Pre 3.0 OpenGL had a set of transformation functions
(now deprecated)
e glTranslate()
e glRotate()
e glScale()

Transformations in OpenGL

e OpenGL would previously receive transform
commands, maintain concatenations of transform
matrices as modelview matrix

e No longer

e Programmer *may* now choose to maintain
modelview or NOT!

Transformations in OpenGL

e Three choices

e Application code
e GLSL functions
e vec.h and mat.h

Why Matrices?

e All transformations can be performed using matrix/vector
multiplication

e Allows pre-multiplication of all matrices

e Note: point (x,y) needs to be represented as (x,y,1), also
called

Homogenous Coordinates

e Homogeneous coordinates representation of point
P = (Px,Py,Pz) => (Px,Py,Pz,1)

e We could introduce arbitrary scaling factor, w, so that
P = (wPx, wPy, wPz, w) (Note: w is non-zero)

e For example, the point P =(2,4,6) can be expressed as
(2,4,6,1)
or (4,8,12,2) where w=2
or (6,12,18,3) where w =3, or....

e To convert from homogeneous back to ordinary coordinates,
first divide all four terms by w and discard 4t term

Homogeneous Coordinates and
Computer Graphics

e Homogeneous coordinates are key in graphics

Transformations (rotation, translation, scaling) can be

implemented with matrix multiplications using 4 x 4
matrices

Hardware pipeline works with 4 dimensional
representations

The World Frames

e In OpenGlL, objects/scene initially defined in world frame

e Transformations (translate, scale, rotate) applied to
objects in world frame

World frame
(Origin at 0,0,0) \

Camera Frame o

After we define a camera (eye) position

We then represent objects in camera frame (origin at eye
position)

objects moved from world frame to camera frame using
model-view matrix

World frame
(Origin at 0,0,0)

Camera frame

(Origin at camera)

General Transformations

A transformation maps points to other points and/or
vectors to other vectors

v=T(u)

Affine Transformations

e Rigid body transformations: rotation, translation,
scaling, shear

® Line preserving: important in graphics since we can

Transform endpoints of line segments
Draw line segment between the transformed endpoints

000
000
L X J
o
Pipeline Implementation
T (from application program)
| frame
u T(u) buffer
— | transformation rasterizer M
v T(v) T(v)
Ve * T(V) /
. T(u),
u * T(u)
vertices >~ vertices > pixels

Point Representation

e We use a column matrix (2x1 matrix) to represent a 2D point

y
e General form of transformation of a point (x,y) to (x’,y’) can
be written as:

x':ax+by+c (%" a b c X
or y'|=|d e f|e|ly
1) \0 0 1) 1)

y'=dx+ey+ f

Translation

e To reposition a point along a straight line

e Given point (x,y) and translation distance (t,, t)

e The new point: (x’,y’)

’—
X=X+t

Y=y +t,

or

P=P+T where

3x3 2D Translation Matrix

I use 3x1 vector

(X" 1 0 t)
y| = (0 1t

(%)
y

1) 0 0 1)

L

*Note: it becomes a matrix-vector multiplication

2D Translation of Objects

*How to translate an object with multiple vertices?

> b3 (oo /
Translate individual Vs i
vertices /1 = o

X' 1 0 3 0.5 t,=3
y'i= (0 1 3|*[05
1 0 0 1 1

3D Translation

e Move each vertex by same distanced =(d,, dy, d)

d

translation: every point displaced
by same vector

Transforms in 3D

e 2D: 3x3 matrix multiplication

e 3D: 4x4 matrix multiplication: homogenous coordinates

e Again: transform object = transform each vertice

e General form:

Xform of P
| —

0L 0

|

3D Translation Matrix

=Now, 3D :

translate(tx,ty,tz)

(t)

0 1

\tz}

(X)

y
Z

Y

"Where: xX=x.1 + y.0 +z.0 +tx.1 =x +tX, ... etc

2D Scaling

=Scale: Alter object size by scaling factor (s,, s,). I.€

(1.1)

(2,2)

- 0

Sx=2,Sy =2

Fo ol

(2,2)

v

(4.4)

2D Scaling Matrix

;

/X'\

1)

[SX

1 — O

L0

:j :@X soy](

’

0 0)
Sy 0

0 1,

)

(X))

ey

Scaling

Expand or contract along each axis (fixed point of origin)

X'=8, X
y'=s,X
Z'=S,X
p’=Sp
s, 0 0
S5) 0 s, O
=S(S,, Sy: S,) =
' 0 0 s,
0 0 0 1

4x4 3D Scaling Matrix
(XY (Sx 0 0) (x)
y'i=| 0 Sy O*y
1) (o 0 1)1

(XY (S, 0 0 0) (x

y' _ 0 S, 0 0 Y

Z' 0O 0 S, 0] |z

(1) Lo 0 o 1)1

Scale(Sx,Sy,Sz)
*Example:

olf SXx=Sy=5z2=0.5
*Can scale:

* big cube (sides = 1) to
small cube (sides = 0.5)

«2D: square, 3D cube

Shearing

(x.y)
(X +y*h,y)

—

Y coordinates are unaffected, but x cordinates are translated linearly with y

That is:
y'=y
X'=X+y*h X' 1 h O X
Yy 1={0 1 0|y
1 0 0 1 1

*h is fraction of y to be added to x

3D Shear

V-7

Reflection

corresponds to negative scale factors
y
A

<

w
P
I
]
H
w
<
I
H
w54

-

-,_____‘_
e
~ s
T
!

- -
.

92
X
[
[
[N
92
<
[
[
[HRN

- R
. -‘\ 5
oy [Sne

2
Yy

original

References

e Angel and Shreiner
e Hill and Kelley

