
Computer Graphics

CS 543 – Lecture 2 (Part 3)

Fractals

Prof Emmanuel AguProf Emmanuel Agu

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

What are Fractals?

� Mathematical expressions

� Approach infinity in organized way

� Utilizes recursion on computers

� Popularized by Benoit Mandelbrot (Yale university)

� Dimensional:

� Line is one-dimensional

� Plane is two-dimensional

� Defined in terms of self-similarity

Fractals: Self-similarity

� Level of detail remains the same as we zoom in

� Example: surface roughness or profile same as we zoom in

� Types:

� Exactly self-similar

� Statistically self-similar

Examples of Fractals

� Clouds

� Grass

� Fire

� Modeling mountains (terrain)

� Coastline

� Branches of a tree

� Surface of a sponge

� Cracks in the pavement

� Designing antennae (www.fractenna.com)

Example: Mandelbrot Set

Example: Mandelbrot Set

Example: Fractal Terrain

Courtesy: Mountain 3D Courtesy: Mountain 3D

Fractal Terrain software

Example: Fractal Terrain

Example: Fractal Art

Courtesy: Internet Courtesy: Internet

Fractal Art Contest

Application: Fractal Art

Courtesy: Internet

Fractal Art Contest

Recall: Sierpinski Gasket Program

� Popular fractal

Koch Curves

� Discovered in 1904 by Helge von Koch

� Start with straight line of length 1

� Recursively:

� Divide line into 3 equal parts

� Replace middle section with triangular bump, sides of length 1/3� Replace middle section with triangular bump, sides of length 1/3

� New length = 4/3

Koch Curves

S3, S4, S5,

Koch Snowflakes

� Can form Koch snowflake by joining three Koch curves

� Perimeter of snowflake grows exponentially:

()iiP 3
43=

where Pi is perimeter of the ith snowflake iteration

� However, area grows slowly and S∞ = 8/5!!

� Self-similar:

� zoom in on any portion

� If n is large enough, shape still same

� On computer, smallest line segment > pixel spacing

3

Koch Snowflakes

Pseudocode, to draw Kn:

If (n equals 0) draw straight line

Else{

Draw Kn-1Draw Kn-1

Turn left 60°

Draw Kn-1

Turn right 120°

Draw Kn-1

Turn left 60°

Draw Kn-1
}

L-Systems: Lindenmayer Systems

� Express complex curves as simple set of string-production rules

� Example rules:

� ‘F’: go forward a distance 1 in current direction

� ‘+’: turn right through angle A degrees

‘-’: turn left through angle A degrees� ‘-’: turn left through angle A degrees

� Using these rules, can express koch curve as: “F-F++F-F”

� Angle A = 60 degrees

L-Systems: Koch Curves

� Rule for Koch curves is F -> F-F++F-F

� Means each iteration replaces every ‘F’ occurrence with “F-F++F-F”

� So, if initial string (called the atom) is ‘F’, then

� S1 =“F-F++F-F”

� S2 =“F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”� S2 =“F-F++F-F- F-F++F-F++ F-F++F-F- F-F++F-F”

� S3 = …..

� Gets very large quickly

Iterated Function Systems (IFS)

� Recursively call a function

� Does result converge to an image? What image?

� IFS’s converge to an image

� Examples:

� The Fern

� The Mandelbrot set

The Fern

Mandelbrot Set

� Based on iteration theory

� Function of interest:

cszf += 2)()(

� Sequence of values (or orbit):

cszf +=)()(

ccccsd

cccsd

ccsd

csd

++++=

+++=

++=

+=

2222

4

222

3

22

2

2

1

))))((((

)))(((

))((

)(

Mandelbrot Set

� Orbit depends on s and c

� Basic question,:

� For given s and c,

� does function stay finite? (within Mandelbrot set) � does function stay finite? (within Mandelbrot set)

� explode to infinity? (outside Mandelbrot set)

� Definition: if |d| < 1, orbit is finite else inifinite

� Examples orbits:

� s = 0, c = -1, orbit = 0,-1,0,-1,0,-1,0,-1,…..finite

� s = 0, c = 1, orbit = 0,1,2,5,26,677…… explodes

Mandelbrot Set

� Mandelbrot set: use complex numbers for c and s

� Always set s = 0

� Choose c as a complex number

� For example: � For example:

� s = 0, c = 0.2 + 0.5i

� Hence, orbit:

� 0, c, c2+ c, (c2+ c)2 + c, ………

� Definition: Mandelbrot set includes all finite orbit c

Mandelbrot Set

� Some complex number math:

� Example:

1* −=ii

63*2 −=ii

Im Argand

diagram

� Modulus of a complex number, z = ai + b:

� Squaring a complex number:

63*2 −=ii

22 baz +=

ixyyxyix)2()()(222 +−=+

Re

Mandelbrot Set

� Calculate first 3 terms

� with s=2, c=-1

� with s = 0, c = -2+i

Mandelbrot Set

� Calculate first 3 terms

� with s=2, c=-1, terms are

813

312

2

2

=−

=−

� with s = 0, c = -2+i

6318

813

2

2

=−

=−

() iii

iii

ii

510)2(31

31)2()2(

2)2(0

2

2

−−=+−+−

−=+−++−

+−=+−+

Mandelbrot Set

� Fixed points: Some complex numbers converge

to certain values after x iterations.

� Example:

� s = 0, c = -0.2 + 0.5i converges to –0.249227 + � s = 0, c = -0.2 + 0.5i converges to –0.249227 +

0.333677i after 80 iterations

� Experiment: square –0.249227 + 0.333677i and add

-0.2 + 0.5i

� Mandelbrot set depends on the fact the

convergence of certain complex numbers

Mandelbrot Set

� Routine to draw Mandelbrot set:

� Cannot iterate forever: our program will hang!

� Instead iterate 100 times

� Math theorem: � Math theorem:

� if number hasn’t exceeded 2 after 100 iterations, never

will!

� Routine returns:

� Number of times iterated before modulus exceeds 2, or

� 100, if modulus doesn’t exceed 2 after 100 iterations

� See dwell() function in Hill (figure A4.5, pg. 755)

Mandelbrot dwell() function

int dwell(double cx, double cy)

{ // return true dwell or Num, whichever is smaller

#define Num 100 // increase this for better pics

double tmp, dx = cx, dy = cy, fsq = cx*cx + cy*cy;

for(int count = 0;count <= Num && fsq <= 4; count++)

{

tmp = dx; // save old real part

dx = dx*dx – dy*dy + cx; // new real part

dy = 2.0 * tmp * dy + cy; // new imag. Part

fsq = dx*dx + dy*dy;

}

return count; // number of iterations used

}

ixyyxyix)2()()(222 +−=+

Mandelbrot Set

� Map real part to x-axis

� Map imaginary part to y-axis

� Decide range of complex numbers to investigate. E.g:

� X in range [-2.25: 0.75]

� Y in range [-1.5: 1.5]� Y in range [-1.5: 1.5]

� Choose your viewport. E.g:

� Viewport = [V.L, V.R, V.B, V.T]= [60,380,80,240]

Mandelbrot Set

Mandelbrot Set

� So, for each pixel:

� Compute corresponding point in world

� Call your dwell() function

� Assign color <Red,Green,Blue> based on dwell() return value

� Choice of color determines how pretty� Choice of color determines how pretty

� Color assignment:

� Basic: In set (i.e. dwell() = 100), color = black, else color = white

� Discrete: Ranges of return values map to same color

� E.g 0 – 20 iterations = color 1

� 20 – 40 iterations = color 2, etc.

� Continuous: Use a function

Mandelbrot Set

Use continuous function

FREE SOFTWARE

� Free fractal generating software

� Fractint

� FracZoom

� Astro Fractals

� Fractal Studio

� 3DFract

References

� Angel and Shreiner, Chapter 9

� Hill and Kelley, appendix 4

