Ubiquitous and Mobile Computing CS 528:MoodScope: Building a Mood Sensor from Smartphone Usage Patterns

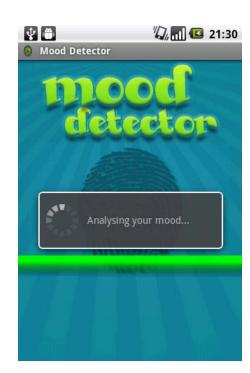
Yu Tian

Qianyun Yang

Computer Science Dept.

Worcester Polytechnic Institute (WPI)

- Mood plays a significant role in our lives, influencing our behavior, driving social communication, and shifting our consumer Preferences.
- In digital realm of mobile devices, there is a distinct lack of knowledge about mood unless manually provided.
- The implementation of a mood sensor may be a key step to enhance the context-awareness of mobile devices.
- Motivational Applications: Mood logger and browser, Mood sharing and Mood-enhanced application.



Introduction

Benefits of mood sensing:

- (1) Can be used by Netflix or Spotify to recommend movies based on user's current mood.
- (2) Build an interesting digital social ecosystem as users' devices automatically share their moods with friends.

MoodScope System

- A system that recognizes users' mood from their smartphone usage patterns. It can peer into usage data and infer a user's mood.
- This system is lightweight and power efficient, application-independent, doesn't require users to carry any extra hardware sensors or rely on the use of the microphone or camera.

Main Contributions

- Demonstrate the feasibility of inferring mood from smartphone usage, paving the way for energy-efficient, privacy-preserving systems that automatically infer user mood.
- How mood affects smartphone usage is personal, a general model performs significantly worse than personalized model.
- Design a user-friendly mood journaling tool to effectively collect user mood data.
- Describe a lightweight, power-efficient, and easy-to-deploy realization of MoodScope.

Related Work

- Recognizing emotions from voice and video: Facial or spoken expressions
 of people may not reflect their true feelings.
- Alternative physiological signal: It requires additional hardware.
- Leveraging signals from smartphones:
- MoodScope: It exploits pre-existing usage patterns of an individual, avoids invasive image and audio data, can run continuously in the background without compromising phone battery life.

Science of Mood:

Circumplex mood model,
Ekman's six basic categories,
Positive and Negative Affect Schedule (PANAS)

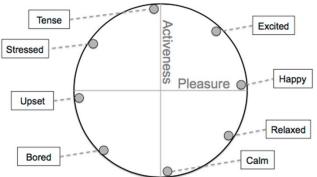


Figure 1: The circumplex mood model

- Participants: 32 existing iphone users from both America and China, cover several professions, several different ages and sex.
- **Pre-Study Focus Group:** The first part dealt with the impact of mood changes on smartphone usage habits. The second part asked for the participants' opinions on mood sharing.
- Field Study: Mood Journaling Application and Smartphone Interaction Logger.

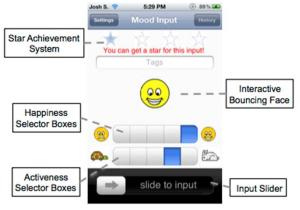


Figure 2: Mood journaling application view

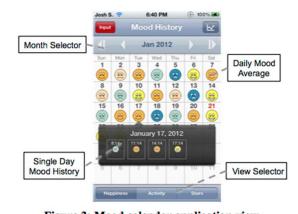
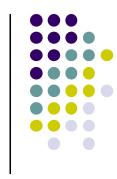


Figure 3: Mood calendar application view

User Study



- Post-Study Focus Group: Ask for Beijing participants for their opinions regarding the usability and effectiveness of mood journaling application.
- Characteristic of User Mood Entries: They consider mood as a twodimensional vector with 25 possible values (P#, A#).
- The response rate, mood persistence, and distribution of the entered moods show MoodScope's efficacy in collecting a wide variety of moods from the users, and provide insight into the design of MoodScope.

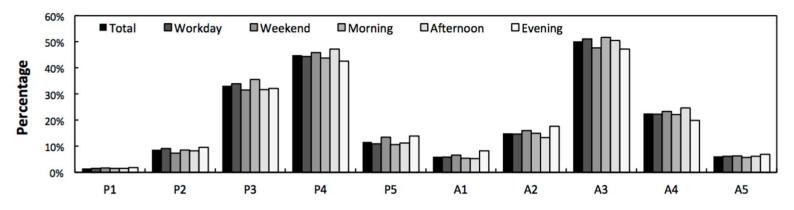


Figure 4: Distribution of user mood entries, grouped by different times-of-day. P1-P5 are moods entered as "very displeased" to "very pleased", while A1-A5 signify "very inactive" to "very active."

To estimate a user's mood

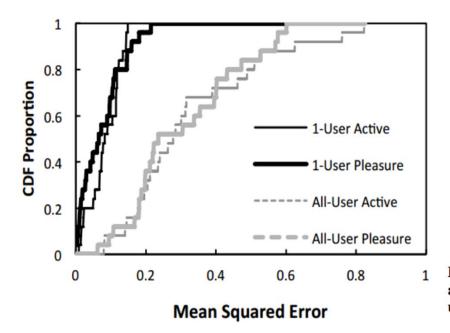
Output: Daily Averages

Input: Usage Records(Social Interaction; Routine Activity)

Table 1: Feature table of usage histograms (and previous mood averages)

Data Type	Histogram by: Dimensions	
Email contacts	# Messages	10
	# Characters	10
SMS contacts	# Messages	10
	# Characters	10
Phone call contacts	# Calls	10
	Call Duration	10
Website domains	# Visits	10
Location Clusters	# Visits	10
Apps	# App launches	10
	App Duration	10
Categories of Apps	# App launches	12
	App Duration	12
Previous 2 Pleasure and Activeness Averages	N/A	4

- Multi-Linear Regression: discern an inference mode
- Sequential Forward Selection of Features: choose relevant features, reducing the dimensionality
- Personalized Mood Model and All-User Mood Model



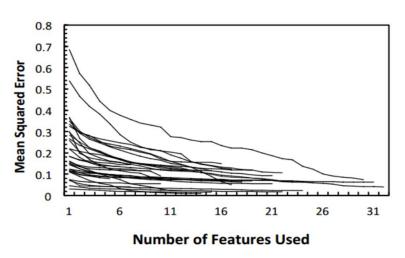
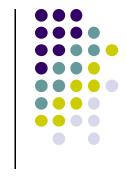


Figure 8: Decrease of Mean Squared Error of pleasure model as features are added. Each line represents a different user. A user's line ends when SFS terminates.



Internal Model of MoodScope

- Hybrid Mood Model Approaches: combine a small amount of userspecific training data with large amounts of training data collected from the general user population
- Comparison to Strawman Models

Table 2: Strawman model performance comparison

Model	Pleas. MSE	Pleas. Acc.	Activ. MSE	Activ. Acc
Model A: average mood	0.242	73%	0.229	74%
Model B: slow-varying mood	0.354	61%	0.318	65%
Model C: no phone features	0.258	70%	0.277	71%
All-user Model	0.296	66%	0.289	67%
Personalized Model	0.075	93%	0.085	93%

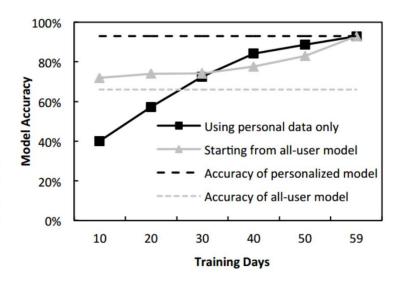
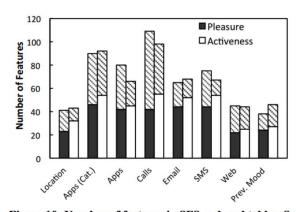
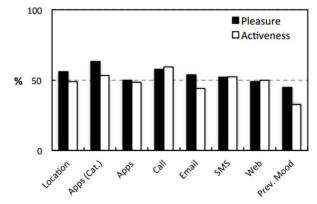


Figure 9: Pleasure training accuracy vs. training data size

Discriminative Features:

- Count number of occurrences in reduced feature table
- Count number of statistically significant features
- Count number of most discriminative features





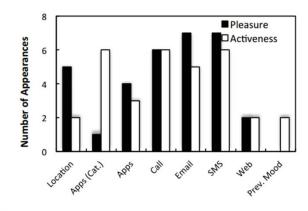


Figure 10: Number of features in SFS-reduced tables. So bars represent statistically significant features (p < 0.05)

Figure 12: Percentage of features that positively correlat Figure 11: Number of times a category appears as a most discriminative feature

Positively and Negatively Correlated Features

The mood inference engine consists of two software components, one residing in the phone and the other in the cloud.

- Training in the Cloud
- Inference on the Phone
 - Implementation and Performance
 - Communication Overhead

Application Programming Interface

Table 4: Mood Inference Engine API specification

Interface	Description	
MoodState class	Data structure containing two floats to represent pleasure and activeness.	
<pre>GetCurrentMood()</pre>	Returns current MoodState.	
GetPastMood(time)	Returns the MoodState at a given timestamp	
SetMood(mood)	Sets the current MoodState to moodstate. Also updates the model on the cloud.	

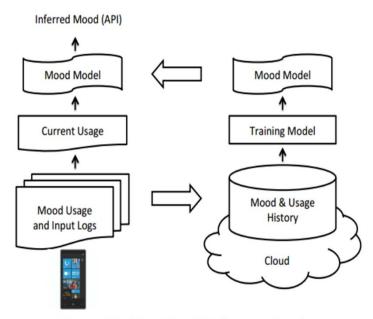


Figure 13: The Mood Inference Engine

- Design a MoodScope Social Sharing App on top of an iPhone Mood Inference Engine as and end to end demonstration of a fully functional mood-aware application.
- Deploy the application on three university students from the original 32 participants after their 2 months of training models in the field of study and received positive feedback.
- MoodScope is a promising and practical approach for inferring mood with smartphone.

• Limitation:

- Evaluate MoodScope with a small-scale user population that fairly homogenous
- Entering mood four times daily can be too burdensome for public adoption
- Not every factor that impacts user mood van be captured by a smartphone
- The privacy preserving mechanisms found within existing MoodScope design are insufficient for a release to the general public

• Future Work:

- Large-scale validation of results and large-scale longitudinal user study
- Determine if user behavior change is driven by mood or some other confounding factor
- Explore how mood models can be trained using data from multiple people while still providing sufficient guarantees of privacy to each user.

- Recognize the importance of mood inference in application contextawareness
- Study the possibility of mood inference from smartphone usage analysis.
 Collect 2 months of usage data and self-reported mood from 32 users
- Use statistical regression technique and further work to robustly regress the daily average of mood and find the phone calls and categorized applications strongly predict mood
- Build a Mood Inference Engine that apply mood models to smartphone user data in real life
- Design a MoodScope API for application developers to use the outputs of our mood inference system to build and enhance their own custom moodenable application.

References

- C. D. Batson, L. L. Shaw and K. C. Oleson. Distinguishing affect, mood and emotion: toward functionally-based concep- tual distinctions. *Review of Personality and Social Psycholo- gy*, 13, Newbury Park, 1992.
- A. Gluhak, M. Presser, L. Zhu, S. Esfandiyari and S. Kup- schick. Towards mood based mobile services and applica- tions. In *Proc. European Conference on Smart Sensing & Context (EuroSSC)*, 2007.
- Z. Zeng, M. Pantic, G. I. Roisman and T. S. Huang. A survey of affect recognition methods: audio, visual, and spontaneous expressions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(1), 2009.
- R.W.Picard. *Affective computing*, MITPress, 1997.
- M. Ester, H.-P. Kriegel, J. Sander and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proc. Second International Conference on Knowledge Discovery and Data Mining*, 1996.
- Hernandez, Javier, et al. Mood meter: counting smiles in the wild. In *Proc. ACM Int'l Conf. on Ubiquitous Computing (UbiComp)*, 2012.