Ubiquitous and Mobile Computing CS 528
MobileMiner: Mining Your Frequent Patterns on Your Phone

Xiaoyan Sun
Mei Yang

Computer Science Dept.
Worcester Polytechnic Institute (WPI)
Motivation:

- Long term Goal:
 - Develop novel middleware and algorithms
 - Mine user behavior patterns entirely on the phone
 - Utilize idle processor cycles

- Accomplished:
 - A novel general-purpose service: MobileMiner
 - http://kingsbsd.github.io/MobileMiner/
 - Discover frequent co-occurrence patterns on the phone
 - The patterns can be used by developers to improve UI
Overview of MobileMiner

- Currently it logs:
 - IDs of the GSM cells you visit.
 - Mobile networks that provide mobile data.
 - Names and BSSIDs of wifi hot-spots.
 - Processes that open network sockets.
 - Socket IP addresses and ports.
 - When 'net-enabled apps send notificationss.

- Export data:
 - Download directory of the device's flash memory, or SD card if it has one
Introduction:

Why Mine Co-occurrence Patterns:

- Preload news ahead
- Intuitive UI
- Send a smart reminder to charge the phone

Main Idea:

- Log raw contextual data
- Mining algorithms can run during idle time (sleeping)
- Charging
- Preload news ahead
- At least 80% battery
- Intuitive UI
- Better privacy guarantees
- Send a smart reminder to charge the phone
- Higher level user context to behavior patterns

Why Mine Patterns on the Mobile Device:

- Mining algorithms can run during idle time (sleeping)
- Charging
- At least 80% battery
- Better privacy guarantees
- Benefits to users with lower-end phones
Contributions:

- **System Design:**
 - Use limited phone resources
 - Provide a prediction engine

- **Performance:**
 - Feasibility of experimental running by using context logs
 - 106 users over 1-3 months
 - Faster than widely used Apriori algorithm
 - Low consumes (0.01-3% battery)

- **Pattern mining:**
 - Analyze patterns individually as well as groups

- **UI improvement:**
 - Predict next outgoing call or app, and provide shortcut icons for them
System Design:

- Data collection:
 - User activity logs (few permissions)

- Base pattern miner:
 - Base Basket extractor
 - Base rule miner

- App usage miner:
 - Filter use threshold
 - App rule miner
 - App pattern retriever: prediction

- Minner scheduler
Basket Extraction and Filtering

Basket Extraction
- Continuous context to a set of small discrete values.
 - Eg: locations, battery
- Timestamped context baskets based on temporal overlap
- Compress duplicate baskets

Basket Filtering
- Boolean expression
- Utility functions
- Benefits:
 - More accurate
 - Faster
 - Free of noise
Weighted Rule Mining

- **Input**: weighted context baskets
- **Output**:
 - Association rules: \(A \rightarrow B \) \{AtHome, UsingWiFi, 10 – 11pm\} \rightarrow \{ChargingPhone\}
 - **Threshold**:
 - Support \(P(A,B) \)
 - Long duration activities: high
 - Short duration activities: low
 - Confidence \(P(B|A) \)
- **Generate frequent itemsets**:
 - Occur many times as support threshold
 - Confidence exceeds confidence threshold
 - Help predict

Challenge:
- Lower support value
- Increasing running time
Apriori VS WeMiT

- **Optimized Apriori**
 - Bottom up
 - If F_n is frequent, generate F_{n+1}
 - Downward closer of support
 - Onepass through
 - Optimized
 - If subset of F_{n+1} of size n is not frequent, pruned F_{n+1}
 - Avoid single pass through

- **WeMiT**
 (Weighted Mining of Temporal Patterns)
 - Compressed weighted baskets
 - 92.5% decrease compare to uncompressed
 - Modified definition of support
 \[B^* = \{ b_1^{w_1}, b_2^{w_2}, \ldots, b_n^{w_n} \} \sum_{i=1}^{n} \text{contain}(b_i^{w_i}, X).w_i \]
 - Running time reduced 15 times on average allow several passed through

http://magpiehall.com/apriori-algorithm/

Figure 5. Distribution of basket frequencies for a sample user.
Context Prediction

- Search association rules generated by MobileMiner
 - Input: co-occurrence patterns
 - Current context: {Morning, Atwork}
 - Target context: {UseGmail}, {UseOutlook}
 - Prediction based on confidence with decrease order
 - Return max

- Example:
 - \{Morning\} → \{UseGmail\} with confidence 0.9 but \{UseOutlook\} with 0.8
 - Return Gmail
 - \{AtWork, Morning\} → \{UseOutlook\} with confidence 0.9
 - Return both Gmail and Outlook

Figure 6. Context prediction using co-occurrence patterns.
Evaluation—Context Data Collection

- 106 participants
 - At least 40 Users collected more than 40 days
 - Around 25 Users collected 21-40 days
Evaluation—Context Data Collection

- 440 unique context events
 - Call events
 - Type
 - Duration
 - Number
 - SMS events
 - Type
 - Number
 - Inferred place identifiers
 - Home
 - Work
 - Outside
 - Location cluster label
 - Phone charging status
 - Battery levels
 - Foreground app usage events
 - Wi-Fi or cell connective
 - Cell id of current location
 - Binary movement status
Evaluation—System Performance

- Is it feasible to run MobileMiner components on the phone?

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Base Basket Extraction</th>
<th>Base Rule Mining</th>
<th>App Usage Filtering</th>
<th>App Usage Rule Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time</td>
<td>1.7 seconds</td>
<td>16.5 minutes</td>
<td>1.4 seconds</td>
<td>21.2 seconds</td>
</tr>
<tr>
<td>Memory</td>
<td>9.9 MB</td>
<td>44.2 MB</td>
<td>11.6 MB</td>
<td>1.0 MB</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>22.9 %</td>
<td>24.3 %</td>
<td>20.8 %</td>
<td>21.9 %</td>
</tr>
<tr>
<td>Number of baskets or rules</td>
<td>114275 baskets 8559 compressed</td>
<td>46675 rules</td>
<td>752 baskets 327 compressed</td>
<td>1062 rules</td>
</tr>
<tr>
<td>Energy per day as % of full battery</td>
<td><0.01 %</td>
<td>0.45 %</td>
<td><0.01 %</td>
<td>0.01 %</td>
</tr>
</tbody>
</table>
Evaluation—System Performance

- How does WeMiT compare to Apriori
Evaluation——Patterns Generated

- What are some sample patterns and how do they use them?
 - Analyze the patterns generated by MobileMiner.
 - Get the confidence of each rule in the matrix visualization.
Evaluation—Patterns Generated

- What are some common patterns across multiple users?
 - Rather than the confidence, they show the percentage of users the pattern occurs in, either among all users (left) or among smaller group with very similar co-occurrence patterns (right)
Example Use Cases—App and Call Prediction

- App recommendation service with short cut icons
 - For each app, they show the reason why is was displayed based on the matching co-occurrence pattern

- Two evaluation metrics:
 - **Recall** is the proportion of app launches or outgoing calls for which **they show recommendations to the users.**
 - **Precision** is the proportion of **times the user uses one of shortcut icons** to complete his task.
Example Use Cases—App and Call Prediction

- What is the Recall-precision tradeoff of predictions?

- Recall-precision tradeoff for 1, 3, 5 and 7 shortcut shown.
- Typically, higher recall results in a lower precision, vice versa.
Example Use Cases—App and Call Prediction

- How do they choose the support value for mining patterns?

- 4-5% improvement in precision as the support values decrease from 20 to 5.

- Developer should choose a appropriate support threshold to achieve reasonable prediction accuracy without incurring too much phone resources.
User survey

- How often will users use our app recommendation service?
 - Use the service regularly: 57%
 - Use sometimes: 42%

- Where should the shortcut icons be placed?
 - Phone’s lock screen: 40%
 - Phone’s quick panel: 26%
 - Main tool bar: 33%

- How many shortcut icons should be displayed?
 - More than 6 icons: Very few
 - 4-6 icons: 71%
 - 1-3 icons: 26%
User survey

- Will users prefer a recall less than 100% for improved precision?
 - Higher precision: 54%
 - Always receive recommendations: 9%
 - Either case: 35%

- What is recall-precision tradeoff preferred by users?

<table>
<thead>
<tr>
<th>Precision</th>
<th>No. of recommendations</th>
<th>Recall</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>3</td>
<td>35%</td>
<td>30.95%</td>
</tr>
<tr>
<td>80%</td>
<td>3</td>
<td>51%</td>
<td>16.67%</td>
</tr>
<tr>
<td>80%</td>
<td>5</td>
<td>68%</td>
<td>23.81%</td>
</tr>
<tr>
<td>80%</td>
<td>7</td>
<td>80%</td>
<td>11.90%</td>
</tr>
<tr>
<td>75%</td>
<td>3</td>
<td>66%</td>
<td>4.76%</td>
</tr>
<tr>
<td>75%</td>
<td>5</td>
<td>87%</td>
<td>11.9%</td>
</tr>
<tr>
<td>75%</td>
<td>7</td>
<td>100%</td>
<td>19.05%</td>
</tr>
</tbody>
</table>
Related Work

- Focus on on-device mining of co-occurrence patterns over users’ mobile context data
 - Compare with other context-aware computation on mobile devices using longitude context data
 - Deal with privacy, data cost, and latency concerns
 - Compare with approaches use specialized predictive classifiers
 - More generalizable
 - Provides more configurability
 - Make predictions with lower accuracy even with missing context events
 - Co-occurrence patterns are more readable and directly usable by end users

- A preliminary version of the work has been presented
Conclusions

- The novel MobileMiner system efficiently generates patterns using limited phone resources
 - 15 times performance improvement over Apriori
 - Generate overall frequent patterns in 16 minutes
 - Detail app usage pattern in 21 seconds
- Found interesting behavior patterns
- Improve the phone UI for launching app or calling contacts
- Future work
 - Explore co-occurrence patterns of events over long time durations
 - Systematically determine the correct frequency of running the mining algorithm
 - Perform a comparison of the context prediction approach
 - Extend to other types of patterns
References

References

References

