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Introduction

e Utilizing of keystroke biometrics on mobile
touchscreen devices

e For password entry, adding an implicit security
layer to observe typing behavior

e Even the password entered is correct, access can
still be denied due to different typing behavior
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Figure 1. Touch-specific keystroke features on a mobile keyboard. In this
example, the user is typing ‘“hi”’. The magnified /i-key shows touch down
and up locations, the drag in between, and the offset to the key’s cen-
tre. The keyboard-overlay shows touch area size and axis, as well as the
“jump’ vector between subsequent touches. In this paper, we analyse
these touch-specific features to improve mobile keystroke biometrics.



Introduction

e To improve implicit authentication accuracy

Evaluated touch-specific features for capturing
individual typing behavior.

Spatial touch features outperform the commonly used
temporal features

Both spatial and temporal features combined to
reduce equal error rates by up to 36.8%



Introduction

e To improve applicability
Discussed and quantified practical implications of
different commonly used evaluations
Compared result for:
Training and testing within sessions or across sessions

Training on owner data only or also on data from others
Assuming fixed or changing hand postures

Allowing for a more realistic assessment of keystroke
biometrics in practice



Introduction

e To improve usability
Proposed an approach to avoid restricting users to
one typing posture
Analyzed one-thumb, two-thumb and index finger
typing
Showed that behavior is highly posture-specific

Presented a method to handle changing hand
postures



Related Work

e Modeling Touch and Typing Behavior

Related research reduced typing errors with keyboard
personalization based on users’ individual touch
distributions per key

Research revealed individual touch typing patterns,
but none of these projects utilized this information for
user authentication

Research also found several influences on general
touch behavior



Related Work

e Behavioral Biometrics for Mobile Typing

Related work applied keystroke dynamics on mobile
phones with physical keys

Used neural networks to authenticate mobile phone
users based on temporal typing features

Used keystroke latencies and key-hold times, but no
touch features



Related Work

e Touch-based Implicit Authentication and
ldentification

Related work addressed verifying user identity with
diverse touch measures

Other work suggested to directly replace passwords
with touch evidence

Further related research distinguished users with rear
projected tabletop systems



Related Work

e Opportunities and Intended Contribution

Related work on keyboard personalization, targeting,
and touch-based authentication has shown individual
touch and typing behavior

Research on keystroke biometrics has either ignored
spatial touch-specific typing features on mobile
devices, or only used such features on tabletops or
with gesture-keyboards

Related work has revealed the need to address mobile
applications of keystroke biometrics and to develop
novel features



Methodology

e Thread Model

Consider that an attacker gains access to an unlocked
device and additionally knows the owner’s password

Here, keystroke information serves as an additional
security layer

Even if the attacker enters the correct password, the
system can deny access due to different typing
behavior



Methodology

e Improving accuracy of keystroke biometrics

Typing features

Needed to capture individual aspects of typing behavior in
order to build user model for authentication

Proposed to consider new spatial touch-specific features:

Exact touch locations at touch down and up events

Offsets between touch up and key-centers

Touch ‘jumps’, the distances between subsequent touches
Drag distances/angles between touch down and up locations
Touch are sizes, ellipses axes, touch pressure



Methodology

e Improving accuracy of keystroke biometrics

User Models for Authentication
Compared models of two types:

= Anomaly detector, which only require training data from the
legitimate user

Classification methods, which are trained on data from multiple
users

In practice, training data can be collected in an enrolment
phase or from normal use.

During testing, these models decide whether the password
was typed by the legitimate user



Methodology

e Improving applicability and usability
Evaluation within sessions vs across sessions

Training and testing on data from the same session is too
optimistic, since, in practical applications, enrolment and
authentication will never follow directly one after the
other

To improve mobile keystroke biometrics for practical use,
it is thus important to study the practically relevant case
across sessions, and to quantify the effects of single
session evaluation to inform future study design



Methodology

e Improving applicability and usability
Classification vs anomaly detection methods

Classifiers are potentially more powerful, since they
characterize the legitimate user in contrast to others,
whereas anomaly detectors can only check for deviation from
the legitimate user’s behavior.

Splitting the data for evaluation of classifiers into three parts:
owner, attacker, and others (excluding the attacker).
Classifiers can be trained on data from owner and others,
without assuming known data from the attacking individual.

Classifiers lead to 28.4 - 48.1% lower EERs relative to anomaly
detectors, and to 45.2 - 58.2% lower EERs
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Figure 2. Three fraining schemes for evaluation of keystroke biometrics.
Anomaly detectors are only trained on data from the legitimate user
(“owner”). In contrast, classifiers also use pooled data from all other
users. However, applications may not always have access to typing be-
haviour of other users in practice, especially not for specific secret pass-
words. Moreover, it is unrealistic to assume known data from the at-
tacker. To address these issues, we 1) recommend anomaly detection for
applications where features are extracted for secret passwords, and we
2) propose a slightly different training scheme for classifiers, which ex-
cludes the attacker from the training data for the “others’-class.




Methodology

e Improving applicability and usability
Fixed vs changing hand postures

Systems that require fixed hand postures restrict the user’s
freedom and lowers the usability

Proposed a framework that allows users to type with different
postures

Used a probabilistic classifier to predict a probability for each
posture, and use posture-specific user models to predict the
probability of the legitimate user per posture, e then combine these
probabilities

Showed that entering a password in a system trained on a different
posture increases EERs by up to 86.3% relative to a system
assuming a fixed posture.
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Figure 3. Probabilistic framework for usable mobile keystroke biomet-
rics which does not restrict users to a fixed hand posture. For an entered
password (input 2), each posture-specific model predicts the probability
p(u|h,7) of the legitimate user u, assuming that the corresponding hand
posture h was used. Additionally, a posture classifier estimates the prob-
ability p(h|i) of each posture indeed being the one used while typing.
Both sets of probabilities are then combined. The resulting probability
p(u|i) of the legitimate user can then be compared against a threshold.



Methodology

e Study and data collection

e Collected typing data in a user study with two sessions

one week apart

e 28 participants with an average age of 25 years old, in
the range of 20 to 33 years old. 8 were female, and 20
male. All were undergraduate or graduate students.

e All used Nexus 5 phones

Type 6 characters 8 characters
dictionary word monkey password
pronounceable [gur39 Bedutfo20
random 12hsVi sSmqde3A

Table 1. Passwords used as stimuli in the user study.



Methodology

e Study and data collection

Examined three common postures:

Thumb, holding the device in the right hand, touching with the right
thumb

Two-thumbs, holding it in both hands, touching with both thumbs
Index finger, holding it in the left hand, touching with the right
index finger
For each hand posture, participants typed 6 different
passwords in random order, 20 times each. In total,
collected 2 sessions x 28 users x 3 postures x 6 passwords
x 20 repetitions = 20,160 correct passwords with 201,600
touches



Results

e Feature Evaluation:

Two feature evaluations

Evaluated which touch and typing feature are most useful to
identify individual behavior

Single Feature Evaluation:
Training models with single feature

As shown in table 2, across all three tested user models:
hold time, touch pressure, and touch location is observed
for lowest EERs. As result, touch feature such as touch

pressure, location and size is more unique to individuals
than hold time does.



* Authentication Equal Error Rate (%)

Feature THUMB TWO-THUMBS INDEX

G kNN LSAD GM kNN LSAD GM kN LsAD
hold time 3198 3202 30.87 | 26.54 2647 2557 | 4034 4073 39.24
flight time 3591 3452 3455 | 3258 3164 31.55] 3692 3685 36.60
up-up 33095 3288 3267|2991 28.77 2945 )| 37.13 36.71 36.99
down-down 3444 3309 3313 | 31.62 3063 3042 | 37.31 3T7.04 37.33
offset x 33.66 33.06 31.56 | 31.65 31.22 2982 | 3930 38.71 37.56
offset v 3328 32,66 31.31 | 3045 30.07 2945 | 36.21 35.79 3407
down x 34.12 3355 3223|3240 31.42 3038 | 3948 30,19 37.63
down v 3402 3341 3227|3176 31.25 31.08 | 36063 36.29 3504
up x 33.64 3312 31.59 | 31.65 31.22 2982 | 3930 38.T1 37.56
up v 33.62 3309 3199 | 31.37 3090 31.03 | 3640 36.19 34.82
jump x 35.58 3480 33.84 | 3293 3229 3]1.08 | 3884 3843 37.13
Jump y 36.92 3637 3487 | 3549 3465 35.09 | 4002 3B.89 38.75
Jump angle 37.81 3776 3681 | 33.15 3252 31.93 | 3987 3941 3B.89
jump distance 34.76 3423 32,17 | 32.39 32,11 31.65 | 37.70 3747 35.64
drag x 44.69 45.02 4345 | 4551 4553 4422 | 4832 4892 46.43
drag v 45.08 4556 4433 | 4560 4600 4493 | 4653 47.24 46.03
drag angle 45.02 45.05 4505 | 4427 4436 44.32 | 4555 4547 4541
drag distance 4409 4476 4413 | 44.14 4484 42,06 | 4621 46,65 4489
down size 3263 3249 2982 | 31.3%9 31.24 2938 | 37.81 32751 37.21
up size 3498 3476 3250|3334 3323 31.61 | 4041 3994 3795
down major® 3263 3276 30.62 | 31.39 31.67 3052 (| 37.81 36.17 36.03
up major® 3498 3499 3259|3334 3367 3218|4041 3981 3847
down pressure 31.38 3103 30.32 | 28.59 2891 27.84 | 33.14 3332 3261
up pressure 40,19 3990 3637 | 3907 3932 36.05 | 4255 42856 4037

* The study phone estimated a spherical touch area and therefore returned identical valwes for major and minor axes.

Table 2. Single feature evaluation. The table shows EERs when using
each feature on its own. Highlighted are the top third features (and
their x/y counterparts) per model/posture combination. Overall, the best
features are hold time, touch down pressure and size, and touch off-
sets/locations. These results show the potential of touch features.



Results

e Feature Set Evaluation:

Different sets of features are used to train the models.

As shown in table 3, spatial touch features are better than
temporal feature, as the authentication EERs of spatial
touch features is 14.3 ~ 23.5% lower than temporal
features. Combination of both spatial and temporal feature
sets achieves 8.5 ~ 16.3% lower EERs than spatial touch
features.



Best Feature Set Authentication EER (%)

GM kNN LSAD
Spatial
THUME: offset x/y, up/down size, jump x 27.38 25.38 20.06
TWO-THUMBS: offset x/v, up/down size 2335 21.73 18.65

INDEX: offset xfy, up/down size, jump distance 32.27 31.19 26.76

Temporal
THUME: hold time, up-up time 28.59 27.75 26.22
TWO-THUMBS: hold time, down-down time 24.40 23.64 21.75
INDEX: hold time, up-up time, flight time 34.57 33.72 33.25
Spatio-Temporal & Pressure
THUME: hold time, offset x/y, up/down size 24.32 2263 17.00
TWO-THUMBS: hold ume, offset x/y,
up/down size 19.01 17.60 13.74
INDEX: hold time, offset x/v, up/down size,
up-up me, jump x, jump distance 30.84 29 48 24 .48

Table 3. Feature set evaluation across sessions. The table shows best
found feature sets when considering only spatial, only temporal, or all
features. These results show that mobile keystroke biometrics benefit
from the proposed spatial touch features, including touch-to-key offsets.




Results

e Fixed vs Changing Hand Postures:

Pervious models were trained by assuming known and
fixed hand posture. However, dynamic posture should
be considered.

Table 5 shows when train a model with one posture
data and test it with a different posture data, the
result average EERs increased by 86.3%. This proves
that the model trained is highly posture specific.



Authentication Equal Error Rate (%) Across Hand Postures
THUMB TWO-THUMBS INDEX

GM

THUMB 24.32 38.67 40.41
TWO-THUMBS 35.66 19.01 40.76
INDEX 43.29 44.13 30.84
kNN

THUMB 22.63 38.29 39.82
TWO-THUMBS 34.85 17.60 40.33
INDEX 42.88 43.88 29.48
LSAD

THUMB 17.00 35.48 37.24
TWO-THUMBS 33.05 13.74 39.12
INDEX 42.45 59.07 2448

Table 5. Equal error rates across sessions when using data of different
hand postures for training (rows) and testing (columns). These results
show that mobile keystroke-based biometrics are highly posture-specific.




Results

e Fixed vs Changing Hand Postures:

The probabilistic framework was implemented to
enable changing hand postures.

To evaluate it, the framework was trained with all the
posture data from the first session, and tested them
with data collected from the second session. As result
an equal error rate with 21.02% is achieved. This also
vielded a reduction in EERs by 36.4 - 64.4% compared
to the values in Table 5.



Discussion

e Challenges:
Mobile typing biometrics vary over time

Data from multiple users improves authentication
accuracy, but is not applicable to password-hardening

Mobile typing biometrics are highly hand posture-
specific



Discussion

e These challenges imply three important
considerations for applicable and usable mobile
keystroke dynamics:

First, user studies should always include multiple
sessions for each participant

Second, classifiers should only be used in evaluations
if they are also applicable to the targeted threat
model.

Finally, applications of mobile keystroke biometrics
have to infer postures dynamically to retain usability



Discussion

e Opportunities

Spatial touch features outperform the traditional
temporal features

Spatial touch features outperform pressure features
Spatial and temporal features complement each other

Models for different hand postures can be combined
to allow for changing postures



Discussion

e In this study, EERs were reduced by up to 36.8%
with the proposed feature sets.

e It showed improvements compared to feature
sets employed in related work when tested with
our models and data.

e For privacy reasons, the data processing system
run on the device, not in a cloud.



Limitations

e Only collected right-handed touches, limiting the
observed set of postures

e Many more methods exist, and could be tested
with a broader set of passwords to improve
generalizability

e An “in the wild” study may observe greater
variability in long-term behavior with varying
contexts and phone models



Conclusion and future work

e This paper revealed, analyzed and discussed
different improvements for a password entry
use-case and threat model. The results include:

Improved implicit authentication accuracy through
new features

Supported realistic evaluations leading to applicable
systems

Improved usability by implementing a framework to
handle changing hand postures



Conclusion and future work

e Future work:

Use touch-specific features in a dynamic typing task,
such as free text messaging

Train regression models to map precise touch
locations with feature values
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