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ABSTRACT

An important question in behavioral epidemiology and pub-
lic health is to understand how individual behavier is af-
fected by illness and sress. Although changes in individual
behavior are intertwined with contagion, epidemiologisis to-
day do not have sensing or modeling wols 1o quantitatively
measure its effects in real-woeld conditions. In this paper,
we propose @ novel application of ubiguitous computing.
We use mobile phone based eo-location and communication
sensing o measure characteristic behavior changes in symp-
tomatic individuals, reflected in their wotal communication,
interactions with respect 1o time of day (e.g., late night, early
moming), diversity and entropy of face-io-face interactions
and movement. Using these extracted mobile featres. it is
possible 1o predict the health stas of an individual, with-
out having actual health measurements from the subject. Fi-
nally, we esiimate the temporal information flux and implied
causality between physical symptoms. behavior and mental
health.
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INTRODUCTION

Face-to-face interactions are the primary mechanism for prop-
agation of airborme contagious disease [28]. An important
guestion in behavioral epidemiology and public health is to

[11]. Such research requires continious, long-term data about
symptom reports. mobility patterns and social interactions
amongst individuals. In this paper, we propose a novel appli-
cation of ubiquitous computing, o better understand the link
berween physical respiratory symptoms, influenza, stress,
mild depression and swomatically capured behavioral fea-
tures. This is an important problem foe several reasons.

Duantitatively understanding how people behave when they
are infected would be a fundamental conribution 1w epi-
demiology and public health, and can inform reatment and
intervention strategies, as well as influence poblic policy de-
cisions. On one hand, clinical epidemiology has accurate in-
formation on the evolution of the health of individuals over
time but lacks realistic social interaction as well as spario-
temporal data [15]. On the other hand. current research ef-
forts in theoretical epidemiology model the rate of infection
in a population whoese behavior is stationary over time and
do not sccount for individual changes [26]. For instance,
if a person infected with infloenza continues his habinal
lifiestyle instead of isolating himself, he could pose a bigger
rigk to others in proximity. Based on our analysis and re-
sults, policymakers can recommend social interventions that
minimize such risk.

Oin the maodeling front, companmental epidemiological mod-
els{e.g., the Susceptible, Infectious, Recovened of SIR mwodel )
commonly sssume thar movement and interaction pattemns
for individuals are stationary during infection, ie., that indi-
viduals will continue their typical behavioral patterns when
sick. More recent epidemiological models accommodate re-
duced mobility variations o to fit epidemic curves, but in a
heuristic way due to lack of data ar the individual level [4,
9, 14]. which possibly limited their prediction accuracy dur-
ing the 2009 HINI influenza epidemic [22]. To oor knowl-




Introduction :

Epidemiology: The study of how infectious disease
spreads in a population

e Face-to-face contact is
primary means of
transmission

e Understanding behavior
is key to modeling,
prediction, policy




The Problem

e Models exist, but lack real data on behavior changes
due to infection:

e large numbers of people, many interactions
e symptom reports

e behavior, mobility patterns, social interactions

e Clinical symptoms/effects are understood, but...

e I|dentification requires in-person physician or self-
diagnosis

e Real-time automatic data collection not possible



Questions Being Answered

e How do physical and mental health symptoms
manifest themselves as behavioral patterns?

e Can cellphone be used as sensor to detect these
behavior changes?

e Can behavioral pattern changes be used to identify
underlying symptoms/syndrome?



Related Work o

Social Sensing:

“Reality Mining” (Bluetooth proximity, call records, cell tower) --> social network structure ,patterns of activity
Human location trace: call records --> temporal and spatial regularity in mobility patterns
Electronic sensor badges (Sociometric badge) --> human activity patterns and conversational prosody features.

CENS and mHealth projects --> mobile phone to map human interaction networks

Computational Social Science:

Google Flue Trends --> search queries used to predict flu activity

Physical Symptoms / Behavioral Changes (Medical Literature)

stress --> illness behavior
stress --> infectious pathology

medical conditions --> depression symptoms



Methodology

e 70 residents of a dorm in North America
e Windows-Mobile device

e Daily Survey (symptom data)

e Sensor-based Social Interaction Data

e 10 weeks




Methodology (Symptom Data)

e Daily survey launcher

e 6AM - respond to symptom questions

Table 1. Symptom Survey QQuestionnaire. All guestions were Yes/No
responses
Survey Question (as shown on mobile phone)
Do you have a sore throat or cough?
Do you have a runny nose, congestion or sneez-
mng?
Do you have a fever?
Have you had any vomiting, nausea or diarrhea?
Have you been feeling sad, lonely or depressed
lately?
Have you been feeling stressed out lately?




Methodology (Social Interaction Data)

Raw Data Captured:
e Bluetooth (scan every 6 minutes)
e WLAN: (scan every 6 minutes)
e SMS and Call records (log every 20 minutes)
e Late night / early morning
e On campus / off campus

e Absolute counts, Entropy

Provides evidence of
e Proximity to other devices (face-to-face)
e Approximate location
e Intensity of ties, size and dynamics of social network

e Consistency of behavior




Methodology (Data / Relationships)

Syndrome [Influenza, Cold/Allergies]

Ve

Symptoms [
Sore throat/cough,
Runny Nose/Conjestion/Sneezing,
Fever,
Vomiting/Nausea,
Sad/Lonely/Depressed
Stressed]

e

Behavioral [
Total Communication,
Late Night Communication,
Communication Diversity,
Bluetooth Proximity Entropy
WLAN Entropy]




Results:




Behavioral Effects of Runny Nose,
Congestion, Sneezing

e Total communication increases (p<.001)

e Late-night communication increases (p<.01)
e Total WLAN AP increases (p<.01)

e Bluetooth entropy decreases (p<.05)




Behavioral Effects of Sore Throat, Cough

e Bluetooth entropy increases (p<.001)
e Total WLAN entropy (univ) decreases (p<.05)
e Total WLAN entropy (external) decreases (p<.01)



Behavioral Effects of Fever

e Early/Late Calls/SMS decreases (p<.01)

e Early/Late Bluetooth decreases (p<.05)

e WLAN entropy (university) decreases (p<.001)
e WLAN entropy (external) decreases (p<.001)



Results: Behavioral Effects of...

e “Sad/Lonely/Depressed”
6 factors with p<.05

e “Stressed”
5 factors with p<.05

Conclusion: Behavioral changes are identified as
having statistically significant association with
reported symptoms.



Goal 2: Symptom Classification based on oce
Behavioral Features

e Detect variations in behavior -> identify likelihood
of symptom and take action

e Need to consider SadDepressed
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Conclusion

e Mobile phone successfully used as sensing device
to capture behavior changes from cold, influenza,
stress, depression

e Demonstrated the ability to predict health status
from behavior, without direct health
measurements

e Opens avenue for real-time automatic
identification and improved modeling
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