CS 528 Mobile and Ubiquitous Computing

Lecture 8: Making Apps Intelligent/Machine Learning

Emmanuel Agu

Making Apps Intelligent (Sensors Inference & Machine Learning)

- If you know machine learning
 - Set off light bulb
 - Projects involving ML?
- If you don't know machine learning
 - Get general idea, how it's used
- Knowledge will also make papers easier to read/understand

Intuitive Introduction to Classification/Supervised Machine Learning

Classification

- Classification is type of machine learning used a lot in Ubicomp
- Classification? determine which class a sample belongs to
- Examples:

Classifier

- Spam filter, Google Fit run a classifier
- Classifier:
 - Inspects new sample, decides which class
 - Created using example-based approach
- Classifier created using supervised machine learning
 - Supervised: labelled data as input
 - Examples of each class => generate rules to categorize new samples
 - E.g: Examples of spam email, non-spam email => generate rules to categorize new email

Explaining Classification/Supervised Learning using Activity Recognition

Activity Recognition

Want app to detect when user is performing any of the

following 6 activities

- Walking,
- Jogging,
- Ascending stairs,
- Descending stairs,
- Sitting,
- Standing

 Approach: Classifier to decide user activity based on accelerometer readings

Example Accelerometer Data for Activities

Step 1: Gather lots of example accelerometer data for each activity type

Example Accelerometer Data for Activities

Gathering Accelerometer Data

- Can write simple app that retrieves accelerometer data while user is doing each of 6 activities (1 at a time)
- Label each data with activity performed.
 - E.g. label the following data as sitting

Funf (funf.org)

- Can also download, FUNF app from MIT to gather data
- Continuously collects user data in background:
 - Accelerometer readings
 - Phone calls
 - SMS messages, etc
- Simple to use:
 - Download app,
 - Check off sensors to log (e.g. accelerometer)

fũn	f inabox
General (displayed in app) App Name: Contact Email: Description:	
Ceneral (not displayed in app) Your Name: Your Email: Organization Name: Location:	
Configuration	
be modified at Dropbox/Funf in Device Android Info every Battery Info every Hardware Info every Mobile Network Info every	ts collection and configuration settings. They can A Box/[Your App Name]/configifunt_config.json. seconds seconds seconds seconds seconds
Time Offset every	seconds
Device Interaction	

Step 2: Run Study to Gather Example Data

- Data collected from many (e.g. 30) subjects
- Users run Funf in their phones while performing each activity
 - Perform each of 6 activities (walking, sitting,.. Etc)
- Accelerometer data collected every 50ms
- Funf pushes data to dropbox, download data
- Now have 30 examples of each activity

Figure 1: Axes of Motion Relative to User

Segment Data (Windows)

Divide raw time-series data divided into segments (e.g. 10 seconds)

Compute Features

- Within segments, compute features
- Features: Functions computed on accelerometer data, captures important accelerometer characteristics
- **Examples:** min-max values within segment, magnitude within segment, standard deviation, moving average

Compute Features

 Important: For given feature formula, each of activities should yield a different range of values

• E.g: Min-max Y axis range feature

Large min-max for jogging

Small min-max for jogging

Feature Computation

Calculate many different features

- Average[3]: Average acceleration (for each axis)
- <u>Standard Deviation[3]</u>: Standard deviation (for each axis)
- Average Absolute Difference[3]: Average absolute difference between the value of each of the 200 readings within the ED and the mean value over those 200 values (for each axis)
- Average Resultant Acceleration[1]: Average of the square roots of the sum of the values of each axis squared √(x_i² + y_i² + z_i²) over the ED
- <u>Time Between Peaks[3]</u>: Time in milliseconds between peaks in the sinusoidal waves associated with most activities (for each axis)
- Binned Distribution[30]: We determine the range of values for each axis (maximum – minimum), divide this range into 10 equal sized bins, and then record what fraction of the 200 values fell within each of the bins.

Machine Learning

 Pull calculated features + activity labels into Weka (or other Machine learning Framework)

What does Weka do?

- Features are just numbers
- Different values for different activities
- Weka figures out ranges corresponding to each activity
- Tries different classifier algorithms (SVM, Naïve Bayes, Random Forest, J48, etc)
- SVM example

Weka also reports accuracy of each classifier type

Table 2: Accuracies of Activity Recognition

	% of Records Correctly Predicted				
	J48	Logistic Regression	Multilayer Perceptron	Straw Man	
Walking	89.9	93.6	91.7	37.2	
Jogging	96.5	98.0	98.3	29.2	
Upstairs	59.3	27.5	<u>61.5</u>	12.2	
Downstairs	<u>55.5</u>	12.3	44.3	10.0	
Sitting	<u>95.7</u>	92.2	95.0	6.4	
Standing	93.3	87.0	91.9	5.0	
Overall	85.1	78.1	<u>91.7</u>	37.2	

Export Classifier from Weka

- Export classifiers as Java JAR file
- Run classifier in Android app
- Classifies new accelerometer patterns while user is performing activity => Guess (infer) what activity

What if you don't know Machine Learning

- Visually inspect accelerometer waveform, come up with rules by trial and error
- E.g. If (min-max range < threshold), activity = sitting

Concrete Examples of Classification

• Voice input from Phone microphone

- Most of computer vision uses machine learning
- Classify camera images, to infer mood

