Google Fit

Google Fit, part of Google Play Services

Single cloud storage record for all user’s fitness apps
(myfitnesspal), gadgets (fitbit), etc

Third-party app developers can read-write user’s health data in
single Google Fit repository, tied to gmail account (cloud storage)

User can track health data using multiple devices, apps, store data

A LE
W vaagaisenthil.co 1
\ x
=
=
e
)
Q

1,453 calories
burned

Google Fit




Google Fit

Ref:http://en.wikipedia.org/wiki/Google_ Fit

User data not lost if user upgrades, change
or loses device

Google Fit components:

e App: Free from Google, supports fitness
tracking, unified view of progress, accessible
from multiple devices

e Cloud Storage: Single repository of user’s
fitness data

e API: Third-party Developers can program app to
access, read, write Google Fit record

13 min walking



Google Fit Features

e Sensors API: Allows app access
raw information from sensors on
user’s devices (including
smartphones and Android wear
devices)

e Recording API: Allows app to
automate storage of fitness data
using subscriptions.

Specific data are automatically stored
in the background

App can access this data on any
device user has granted permission to

Google
Fitness Store

]

Android Device

Android App
Google Play services ‘

Android Fitness APIs

|

Android Sensors

Wearable Devices



Google Fit Features

e History: App can access user’s fitness history
e Supports inserting, deleting and querying previously stored fitness data
e Can also import batch data into Google Fit

e Bluetooth Low Energy: Access data directly from Bluetooth, store
data from them

e Apps can find nearby Bluetooth devices and store data from them

B

€3 Bluetooth’

Bluetooth Glucometer Bluetooth Weight Scale




Google Fit API

_ ey - : o0
http://en.wikipedia.org/wiki/Google_Fit °

e Google Fit APl also has API for step counting

e i.e. Low end phones without step counter can use Google Fit’s
step counting API

e Implemented as a Google service

e Also DetectedActivity API to detect smartphone user’s current
activity
e Currently detects 6 states:
e Invehicle
e On Bicycle
e On Foot
o Still
e Tilting

e Unknown



Using Google Fit




Google Fit APl Setup:
Step 1: Create Google Account

e Can use your existing Google account or create new

one for testing
Create your Google Account

MMMMM




Google Fit API Setup:
Step 2: Get Google Play Services :

Google Play Services: API package and background service

Allows apps to communicate with Google’s services (e.g. maps,
Google+, Google Drive, Google Fit, etc)

Google Play Services APK
e Contains individual Google services

e Runs as background services on Google Play
Your App Services

* Client Library _ i |

without depending on software |

Android client that apps interact with
e Downloaded through Google Play store

Google updates Play Services often

updates by phone makers
Google Play services 7.0 and higher has Google Fit b Play Store



Google Fit APl Setup:
Step 3: Get an Oauth 2.0 Client ID

Oauth 2.0 is open standard for authorization

Allows users to log into third party websites using their Microsoft,
Google, Facebook or Twitter accounts

Can get Oauth 2.0 client ID through Google Developers Console
See: https://developers.google.com/fit/android/get-api-key

Oauth 2.0 client ID is string of characters. E.g.
780816631155-gbvyo10/7r2pn95qc4ei19d61iod4uh48hl.apps.googleusercontent.com

Google

AAAAAAAAA

Monitoring

ooooooooo Public APl access
eeeeeeeeeeeee se

Big Data



Google Fit APl Setup:
Step 4: Configure your Project

e Android Studio is recommended for development
e Create Android Studio project
e Add Google Play services as dependency in build.gradle file

apply plugin: ‘com.android.application’

dependencies {
compile 'com.google.android.gms:play-services-fitness:8.4.0°

}

https://developers.google.com/fit/android/get-started



Google Fit API Setup: oo
Step 5: Connect to the Fithess Service

e Connect to the appropriate fitness service and use it
Fitness.SENSORS_API
Fitness.RECORDING_API
Fitness.HISTORY_API
Fitness.SESSIONS_API
Fitness.BLE_API
Fitness.CONFIG_API



Creating Google Fit Client

Step 1: Define variables to help track Google Fit connection

private GoogleApiClient mClient = null;




Creating Google Fit Client
Step 2: Connect to Google Fit, Check Permissions

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity _main);

I/l This method sets up our custom logger, which will print all log messages to device and logcat
initializeLogging();

Il When permissions are revoked the app is restarted so onCreate
if (lcheckPermissions()) {
requestPermissions();

}
}

@Override
protected void onResume() {
super.onResume();

/I If user denies permissions then uses Settings to re-enable them, app will start working
buildFitnessClient();

}



Main GoogleFit Client Commands and Callbacks

e GoogleApiClient.Builder: Used initially to create GoogleFit client,
authenticates user, allows user access Fitness APls, specifies app scopes

e Scopes? Read/write permissions to different data types

e onConnectionSuspended( ): Called when sensor connection gets lost

e onConnectionFailed( ): Called when Google Play Services connection fails
intentionally

e Some example reasons for connection failure: User never signed in before, has
multiple Google accounts and needs to specify which one to use, etc)



Google Fit Data Types

e Google Fit supports:
Instantaneous readings with timestamp (e.g. Current user activity)

Aggregate statistics over time interval (e.g. Total calories expended over a
time interval)

e 3 Google Fit data types
Public data types: Standard data types that any app can read and write (e.g.
Step count)

Private custom data types: custom types defined by a specific app. Only that
app can read/write this data

Shareable data types: App developers can submit data types which can be
shared after reviewed and approved (E.g. types for Nike Fuel)



Example Google Fit Public Instantaneous Data Types

Data Type Name

Description

Permission

Fields (Format—Unit)

com.google.activity. Instantaneous sample of the Activity activity (int—enum)
sample current activity. confidence (float—percent)
com.google.activity. Continuous time interval of a Activity activity (int—enum)
segment single activity.

(deprecated) com.google. Total calories consumed over a Activity calories (float—kcal)
calorles.consumed time interval.

com.google.calories. Total calories expended over a Activity calories (float—kcal)
expended time interval.

com.google.distance. Distance covered since the last Location distance (float—meters)
delta reading.

com.google.heart_rate. Heart rate in beats per minute. Body bpm (float—bpm)
bpm

com.google.height The user's height, in meters. Body height (float—meters)
com.google.step_count. Instantaneous cadence in steps Activity rpm (f loat—steps/min)
cadence per minute.

com.google.step_count. Number of new steps since the Activity steps (int—count)

delta

last reading.




Example Google Fit Public Aggregate Data Types

Data Type Name

Description

Permission

Fields (Format—Unit)

com.google.activity. Total time and number of Activity activity (int—enum)
summary segments in a particular activity duration (int—ms)
for a time interval. num_segments (int—count)
com.google.heart_rate. Average, maximum, and minimum Body average (float—bpm)
summary beats per minute for a time max (float—bpm)
interval. min (float—bpm)
com.google.location. A bounding box for the user's Location low_latitude (float—degrees)
bounding_box location over a time interval. low_longitude (float—degrees)
high_latitude (float—degrees)
high_longitude (float—degrees)
com.google.nutrition. User's nutrition intake during a Mutrition nutrients (Map<String, float>—
summary time interval. calories/grams/IU)
meal_type (int—enum)
food_item (String—n/a)
com.google.power.summary Average, maximum, and minimum Activity average (float—watts)
power generated while performing max (float—watts)
an activity. min (float—watts)
com.google.speed.summary Average, maximum, and minimum Location average (float—m/s)
speed over ground over a time max (float—m/s)
interval. min (float—m/s)
com.google.weight.summary Average, maximum, and minimum Body average (float—kg)

weight over a time interval.

max (float—kg)
min (float—kg)



Google Fit Data Scopes

e Scopes are strings that specify

e Types of data app can access

e Level of access (Read/write permissions)

e App requests a scope of access during initial connection, access data if
permission received

Permission

Scope

Type of
Access

Data Types

Activity

FITNESS_ACTIVITY_READ

Read

FITNESS_ACTIVITY_READ_WRITE

Read and Write

com.google.activity.sample
com.google.activity.segment
com.google.activity.summary

(deprecated) com.google.calories.consumed

com
com
com

.google.
.google.
.google.

caloriles.expended
cycling.pedaling.cadence
power .sample

com
com
com

.google.
.google.
.google.

step_count.cadence
step_count.delta
activity.exercise

Body

FITNESS_BODY_READ

Read

FITNESS_BODY_READ_WRITE

Read and Write

com
com
com
com
com

.google.
.google.
.google.
.google
.google

heart_rate.bpm
heart_rate.summary
height

.weight
.weight.summary




Google Fit Data Scopes

Type of
Access

Permission

FITNESS_LOCATION_READ Read

Location
FITNESS_LOCATIOM_READ_WRITE Read and Write

COom.

google.

cumulative

COom.
Com.
Com.

COom

Com.
Com.

google.
google.
google.
.google.
google.
google.

Data Types

cycling.wheel_revolution.

cycling.wheel.revolutions
distance.delta
location.sample
location.bounding_box
speed

speed.summary

FITNESS_NUTRITION_READ Read

Mutrition
FITNESS_NUTRITION_READ_WRITE Readand Write

com

com.

.google.
google.

nutrition.item
nutrition.summary



Creating Google Fit Client
Step 2: Connect to Google Fit, Check Permissions

private void buildFitnessClient() { < Create Google Fit client
if (mClient == null && checkPermissions()) {
mClient = new GoogleApiClient.Builder(this)«———— Provide variable for tracking connection
.addApi(Fitness.SENSORS_API) <—— Add Fitness sensor API
.addScope(new Scope(Scopes.FITNESS_LOCATION_READ))_____ Requestread access to
.addConnectionCallbacks( fitness ocation data
new GoogleApiClient.ConnectionCallbacks() {
@OQOverride
public void onConnected(Bundle bundle) {
Log.i(TAG, "Connected!!!");
// Now you can make calls to the Fitness APIs.
findFitnessDataSources();

}



Creating Google Fit Client
Step 2: Connect to Google Fit, Check Permissions

@Override
public void onConnectionSuspended(int i) {€———— Called if sensor connection lost
// If your connection to the sensor gets lost at some point,
// you'll be able to determine the reason and react to it here.
if (i == ConnectionCallbacks.CAUSE_NETWORK_LOST) {
Log.i(TAG, "Connection lost. Cause: Network Lost.");
}else if (i
== ConnectionCallbacks.CAUSE_SERVICE_DISCONNECTED) {
Log.i(TAG,
"Connection lost. Reason: Service Disconnected");



000
000
. . . 000
Creating Google Fit Client 0o
Step 2: Connect to Google Fit, Check Permissions | ©
.enableAutoManage(this, 0, new GoogleApiClient.OnConnectionFailedListener() {
@Override
public void onConnectionFailed(ConnectionResult result) { \
Log.i(TAG, "Google Play services connection failed. Cause: " +
result.toString()); Called if Google Play
Snackbar.make( connection fails

MainActivity.this.findViewByld(R.id.main_activity view),

"Exception while connecting to Google Play services: " +
result.getErrorMessage(),

Snackbar.LENGTH_INDEFINITE).show();

)
build();



Activity Recognition
Using Google Fit



Activity Recognition Using Google Fit
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials o

e Google Fit can:
e Recognize user’s current activity (Running, walking, in a vehicle or still)
e Why? E.g. If user is driving, don’t send notifications

e Track user’s steps

e Project Setup similar to previously described case:
e Create Android Studio project with blank Activity (minimum SDK 14)
e In build.gradle file, define latest Google Play services (8.4) as dependency



Activity Recognition Using Google Fit
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

e Create new class ActivityRecognizedService which extends
IntentService

e Throughout user’s day, GooglePlay sends user’s activity to this
IntentService

e Need to program this Intent to handle incoming user activity

public class ActivityRecognizedService extends IntentService {

public ActivityRecognizedService() {
super("ActivityRecognizedService");
}

public ActivityRecognizedService(String name) {
super(name) ;
}

@override
protected void onHandleIntent(Intent intent) {

}



Activity Recognition Using Google Fit
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

Modify AndroidManifest.xml to

e Declare ActivityRecognizedService

e Add com.google.android.gms.permission.ACTIVITY_RECOGNITION permission

<?xml version="1.0" encoding="utf-8"?>
<manifest xmins:android="
package="com.tutsplus.activityrecognition">

<uses-permission
android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

<service android:name=".ActivityRecognizedService" />
</application>

</manifest>



° 00
Project Setup o2
e To connect to Google Play Services, provide GoogleApiClient
variable type and implement callbacks

public class MainActivity extends AppCompatActivity implements GoogleApiClient.ConnectionCallbacks,
GoogleApiClient.OnConnectionFailedListener {

public GoogleApiClient mApiClient;

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

}

@Override
public void onConnected(@Nullable Bundle bundle) {

}

@Override
public void onConnectionSuspended(int i) {

}

@Override
public void onConnectionFailed(@NonNull ConnectionResult connectionResult) {

}



Requesting Activity Recognition

e In onCreate, initialize client and connect to Google Play Services

@Ooverride

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity main);

mApiClient = new GoogleApiClient.Builder(this)

.addApi(ActivityRecognition.API) «——— Request ActivityRecognition.API
.addConnectionCallbacks(this)

.adan{GnnectiDnFailedListener(thiskk\\\\\\\ Associate listeners with
.build(); our instance of

GoogleApiClient
mApiClient.connect(); gieAp



Requesting Activity Recognition

e Once GoogleApiClient has connected, onConnected( ) instance is
called

e Need to create a Pendingintent that goes to our IntentService
e Also set how often APl shold check user’s activity in milliseconds

@Override
public void onConnected(@Nullable Bundle bundle) {
Intent intent = new Intent( this, ActivityRecognizedService.class );
Pendinglintent pendingintent = Pendinglintent.getService( this, 0, intent, Pendingintent.FLAG_UPDATE_CURRENT );

ActivityRecognition.ActivityRecognitionApi.requestActivityUpdates( mApiClient, 3000, pendingintent );
}



Handling Activity Recognition

e Our app now needs to attempt to recognize the user’s activity
every 3 seconds, send data to ActivityRecognizedService

e |In onHandlelntent( ) method of ActivityRecognizedService
Validate that received intent contains activity recognition data
If so, extract ActivityRecognitionResult from the Intent

Retrieve list of possible activities by calling getProbableActivities( ) on
ActivityRecognitionResult object

@Override
protected void onHandlelntent(Intent intent) {
if(ActivityRecognitionResult.hasResult(intent)) {
ActivityRecognitionResult result = ActivityRecognitionResult.extractResult(intent);
handleDetectedActivities( result.getProbableActivities() );

}
}



Handling Activity Recognition

e Simply log each detected activity and display how confident
Google Play services is that user is performing this activity

private void handleDetectedActivities(List<DetectedActivity> probableActivities) {
for( DetectedActivity activity : probableActivities ) {
switch( activity.getType() ) {

case DetectedActivity.IN_VEHICLE: {
Log.e( "ActivityRecogition"”, "In Vehicle: " + activity.getConfidence() );
break;

}

case DetectedActivity.ON_BICYCLE: {
Log.e( "ActivityRecogition", "On Bicycle: " + activity.getConfidence() );
break;

}

case DetectedActivity.ON_FOOT: {
Log.e( "ActivityRecogition", "On Foot: " + activity.getConfidence() );
break;

}

case DetectedActivity. RUNNING: {
Log.e( "ActivityRecogition”, "Running: " + activity.getConfidence() );
break;

}

case DetectedActivity.STILL: {
Log.e( "ActivityRecogition", "Still: " + activity.getConfidence() );
break;

}

case DetectedActivity. TILTING: {
Log.e( "ActivityRecogition", "Tilting: " + activity.getConfidence() );
break;

}




Handling Activity Recognition

e If confidence is > 75, activity detection is probably accurate

case DetectedActivity. WALKING: {

Log.e( "ActivityRecogition", "Walking: " + activity.getConfidence() );

if( activity.getConfidence() >=75) {
NotificationCompat.Builder builder = new NotificationCompat.Builder(this);
builder.setContentText( "Are you walking?" );
builder.setSmalllcon( R.mipmap.ic_launcher);
builder.setContentTitle( getString( R.string.app_name) );
NotificationManagerCompat.from(this).notify(0, builder.build());

}

break;

}

case DetectedActivity. UNKNOWN: {
Log.e( "ActivityRecogition", "Unknown: " + activity.getConfidence() );
break;

}
}
}
}




Sample Output of Program

e Sample displayed on development console

E/ActivityRecogition:
E/ActivityRecogition:
E/ActivityRecogition:
E/ActivityRecogition:

e Or provided as notification to user

On Foot: 92
Running: 87
On Bicycle: 8
Walking: 5

477

MONDAY.EEBRUARY 1

e Full code at: https://github.com/tutsplus/Android-

ActivityRecognition



