
Ubiquitous and Mobile Computing  
CS 528: Decentralized Lost and

Found with Geolocation

Evin Ugur
Worcester Polytechnic Institute (WPI)

Contents
● Overview

● Summary/Proposal
● Vision
● Related Work

● Methodology/Implementation
● Application Architecture
● Location Algorithm

● Results

We all lose stuff!
● People lose items everyday

● the average person loses $5,591 worth of valuables in a
lifetime (Pebblebee)

● Sometimes we find things that people lost
● There might not always be a lost and found

● These occurrences are very regular on large shared spaces
● WPI
● Office
● Public Event (Festival, Town Meeting)

Proposal
● Decentralized Lost and Found (LAF) app based primarily based on

geolocation
● Camera, and other Ubicomp concepts can be integrated

● App provides way for users to:
● Report an item of theirs as missing - including the location where

it was lost
● Log unattended items as missing

● If you lost an item maybe someone already found it
● Report a missing item as found

● Notion of Location history - for example if you found some
missing headphones in Zoolabs, you can log that and then
bring them to the WPI Lost and Found Office

● Notify users when they are near misplaced stuff (more to come…)
● Users can interact directly with an item they are reporting or

responding to, as well as indirectly with other users using the
item as a means of communication.
● ultimately leading to missing items being resolved

The Vision
● Goal of this project is to show proof-of-concept decentralized LAF

service
● Actual Implementations would have to have a layer of social

interactions on top of software concept to mitigate against theft.
● Different Social/Usage Models Based on top of Tech:
● Notion of friends in the app - When you report to the app that you

lost something have option to limit its visibility to only friends
● Notion of bounties - have payment interaction around the process
● Gamification - not mutually exclusive with other approaches
● Limit Audience - perhaps this service would be very effective

exclusively on large communal spaces
● Large Office Campus
● TV/Movie Production Sets

Related Work
● Bluetooth Low Energy Attachments

● Attach a device to your item - items can’t be found
retroactively

● > Chipolo > Pebblebee
● TrackR uses geolocation when other TrackR users walk

near their device - still reliant on hardware and service!
● You can’t install hardware onto everything
● Proposed approach isn’t mutually exclusive
● Hardware trackers are marketed for very important things

● Wallet - Keys - Dog (attach tracker to collar)
● Would you use one for your (still important) notepad?

Application Architecture
● Android Application with permission based

access to sensors
● Server is hosted by Google App Engine - Part

of Cloud Platform
● Allows easy pulling in of other Google APIs

- i.e. PlacePicker
● Cloud Endpoints provide RESTful interface

to backend - Gradle task automatically
generates Android client library

● MySQL DB
● Captures Users, MissingItems, Locations
● Captures Interactions Between Entities

Finding Nearby Items -
Haversine Formula (Theory)
● Great-Circle Distance: shortest distance

between two points on the surface of a sphere
(Earth)

● Haversine formula - computes GCD from
latitude and longitude of two points
● d = distance between points
● r = sphere radius
● φ/λ - lat/lon

Finding Nearby Items -
Haversine Formula Example SQL
SELECT id,
 (3959 * Acos(Cos(Radians(37)) * Cos(Radians(lat)) * Cos(
 Radians(lng) - Radians(-122)) +
 Sin(
 Radians(37)) * Sin(Radians(lat)))) AS distance
FROM markers
HAVING distance < 25
ORDER BY distance
LIMIT 0, 20;

● Query returns 20 closest location IDs that
are within a 25 mile radius of the point
lat: -122; lon: 37

● In the LAF Cloud Service, the latitude and
longitude are much more precise - and
the radius should be very small (Currently
experimenting

● 3959 is the radius of the earth (in miles!)

Android Report Found/Lost
Flows

Between Now and Tuesday

● Between Now and Code Deliverable Deadline
The Largest Hurdle Remaining is integrating the
nearby items (which is on the backend) into
Android in an intuitive way.

● Other UI tweaks/testing

Thanks!
Questions?

References

● Tile: Never Lose Anything https://
www.thetileapp.com/

● Mozy: Lost and Found Reports https://
mozy.com/about/news/reports/lost-and-found/

● Lost Items Cost Americans $5951 http://
www.nydailynews.com/news/national/lost-
items-cost-americans-5-591-survey-
article-1.2237244

https://www.thetileapp.com/
https://mozy.com/about/news/reports/lost-and-found/
http://www.nydailynews.com/news/national/lost-items-cost-americans-5-591-survey-article-1.2237244

