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ABSTRACT
The Ultraviolet (UV) radiation is one of the causes of skin
cancer, skin aging and eye damage. Thousands of people
are getting affected by skin cancer globally every year. UV
radiation cannot be seen or felt, so it is important for peo-
ple to be aware of the risks and regularly be reminded to
take appropriate protective action. To overcome this prob-
lem, we present Smart UV: an ubiquitous application de-
signed to dynamically warn users about their sun exposure
and provide protection suggestions. Based on the estimated
time the person is outdoor, the app tracks the user’s sun
exposure time in real-time. In order to detect if a person
is outdoor, we implemented a classifier based on GPS sen-
sor data. The resulting classifier performed very well in the
tested environments, providing accurate estimation of UV
exposure time. In addition, a separate app was designed to
collect data for general-purpose indoor/outdoor classifiers
and we finally present many ways to explore the app idea.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Miscellaneous; J.3 [Life
and Medical Sciences]: Miscellaneous

General Terms
Human Factors, Algorithms, Verification

Keywords
ubiquitous computing, indoor outdoor classifier, sun expo-
sure, UV index, machine learning, weka

1. INTRODUCTION
The UV Index is a measure of the intensity of the sun’s

ultraviolet radiation in the sun burning spectrum. As UV
Index increases, the sun’s rays can affect your skin, eyes
and immune system. Therefore, you need to take more pre-
cautions to protect yourself from these harmful rays. Ac-
cording to World Health Organization (WHO), Ultraviolet
(UV) radiation is a known cause of skin cancer, skin aging,
eye damage, and may affect the immune system [1]. Approx-
imately 130,000 skin cancer cases occur globally each year,
substantially contributing to mortality rates in fair-skinned
populations. An estimated 66,000 deaths occur annually
from melanoma and other skin cancers. Worldwide some

12 to 15 million people become blind from cataracts annu-
ally, of which up to 2 million may be caused or enhanced
by sun exposure according to WHO estimates. An obvious
but very important way to limit your exposure to UV light
is to avoid being outdoors in direct sunlight too long. This
is particularly important between the hours of 10 am and 4
pm, when UV light is strongest. UV rays reach the ground
all year, even on cloudy or hazy days, but the strength of
UV rays can change based on the time of year and other
factors. People in some areas may get sunburned when the
weather is still cool or cloudy because they may not think
about protecting themselves if it is not hot outside.

For people who are regularly exposed to the sun for long
periods of time or who have sensitive skins, a more com-
prehensive strategy is required to minimize risks. This is
because the sun is an UV radiation source that cannot be
controlled like other workplace exposure hazards. As UV
radiation can neither be seen nor felt, so it is important for
people to be aware of the risks and regularly be reminded
to take appropriate protective action. [2]

Smartphones and mobile applications are changing Amer-
icans’ health communication landscape. Mobile phone in-
terventions have improved preventive behaviors, including
sunscreen use; however, nearly all employed simple, less in-
teractive text messaging, rather than the latest smart phone
technology. Smartphones can deliver engaging, personalized
and real-time advice in using location and data services.
This paper breaks away from established approaches to pro-
tect yourself from UV radiation, and explores an alternative
way to check if you are indoor or outdoor and keep track of
the amount of time to which you are exposed to sun. Smart
UV can potentially generate tailored advice that should el-
evate self-efficacy expectations, improve response efficacy,
and provide cues to sun protection practices. Finally, smart-
phones may reach high-risk populations that take relatively
few precautions, such as males, young adults and children
who are avid users of smart phones.

2. RELATED WORK
One of the most common and quickest ways to get infor-

mation about UV Index is via Mobile application or online
weather services. The low cost of featured smartphones and
open availability of Google Play market has motivated var-
ious developers and mobile App enthusiasts to develop a
variety of apps to help users learn about and protect them-
selves from the deleterious effect of the UV radiation. These
including Sunsmart [3], sunZapp [4], and Sun Exposure [5].

These applications evaluate the sun exposure based on
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the user input information, such as their location, skin type,
SPF of the sunscreen they are using, their clothes etc. The
time involved in this process is relatively high and requires
users to enter information about their sun exposure manu-
ally, which also requires users to open the applications fre-
quently. Since they depend on the user engagement, these
applications can yield unreliable results.

The increasing concern of UV radiation effects and the
increment of ubiquitous computing has encouraged develop-
ers to collect data in a cost effective manner, without users
entering any information on their smart phones, and warn
who are exposed to these harmful rays frequently. There are
some applications that dynamically provides updates about
sun exposure, these being JUNE [6], SunSprite [7] and Sun-
droid [8]. However, these applications require the user to
use wearable Bluetooth accessories or smartwatches, which
are expensive and intrusive.

The closest related work is Sun Bath [23], which is a very
recent work that performs ubiquitous monitoring of human
sunlight exposure in urban environments. The application
uses location, sun position, weather condition and the di-
mensions of surrounding buildings to estimate the user’s sun
exposure using a sophisticated ray tracing algorithm. The
dimensions of the buildings are inferred through geomet-
ric analysis of satellite photos provided online. However,
this implementation requires complex models and interac-
tion with a server.

Smart UV is designed to be a robust, simple and dynamic
application that warns users about their sun exposure. We
designed and built a system from scratch to provide users
with dynamic updates about the UV index based on their
location and provide information about their exposure time.
To the best of our understanding, incorporating these mod-
ules in any other existing application would require major
changes in its core architecture.

3. METHODOLOGY
According World Health Organization (WHO) [9] and US

Environmental Protection Agency (EPA) [10], people are
more likely to get exposed to ultra violet radiation when
they are outdoor. So, the plan is to design an app that
tracks the amount of time the person has been outdoor as
well as provide some suggestions and warnings based on esti-
mated exposure time and the corresponding UV Index. For
example, the app can provide protection advises and sun-
screen reminders, such as sunburn time and high UV index
alerts.

Thus, this project consists in developing an indoor/outdoor
classifier and a background service that keeps track of the
UV exposure time for each hour of the day along with the
UV index. The project is mainly focused on the background
structure. Since the time to develop this project was short,
more sophisticated front-end features is proposed as future
work.

3.1 Indoor/Outdoor Classifier
There are many approaches to estimate if the person is

outdoor or indoor (or similar applications) using mobile ap-
plications. There is no dominant way to estimate the in-
door/outdoor state so each approach has its own specific
drawbacks. For example, [16],[18] and[15] explore GPS, WiFi
scanning and other power-hungry sensors. [12][13][14] and
[17] present alternative ways of using light sensor, magnetic

field sensor, GSM signal strengths and Bluetooth beacons.
These approaches implement complex models or they do not
accomplish robust results.

Most of the articles claim that GPS is not practical be-
cause it is power-inefficient. However, none of them try to
apply supervised learning on GPS status features and do
not combine it with activity recognition to save battery con-
sumption as Smart UV does.

The articles [12] and [13] state that light sensor is a very
accurate feature to classify the indoor/outdoor state dur-
ing day-time with simple threshold. Usually, the light sen-
sor value is significantly higher when the person is outdoor
compared to indoor. Since Smart UV is supposed to work
during the day and the light sensor is lightweight in terms
of battery consumption, we reuse their conclusions ([12][13])
and apply a light sensor classifier with a simple threshold of
2000 lux.

On the next sections, the chronological steps to develop
the classifier are explained (all the related tests were done
in a Nexus 5x phone powered with Android 6.0 Operating
System).

3.1.1 Data Collection
The first step is to collect data for classification training.

All the information contained in the GpsStatus object of
Android API [19] is collected along with the accuracy and
”first time to fix” values of the Location object ([20]). We
also collected battery temperature, light sensor and GSM
signal strength for future analysis.

Basically, GpsStatus contains information about the satel-
lites used to estimate the phone’s location. Usually, the
sensor detects around 20 satellites. The main satellite in-
formation is the signal to noise ratio (SNR), that measures
the ratio between the level of a desired signal and the level
of background noise. Usually, the SNR is smaller in indoor
places, because mechanical barriers usually degrades GPS
signals.

Then, we developed an app, called ”IO Collector”, that
collects data in the background and allow the user to record
the current indoor/outdoor state by hitting the correspond-
ing buttons. Figure 1 show the app interface.

Figure 1: IO Collector
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The table 3.1.1 show the main features extracted from
GPS Data.

GPS Features
Accuracy Location accuracy [meters]

FirstT imeToF ix
Time to get the first

Location update
AvgSNR Average of Satellites’ SNR

StdDevSNR
Standard Deviation of

Satellites’ SNR
Avg/StdDev(SNR) ”Pseudo-Normalized SNR”

%(SNR < 10)
(Count of satellites with
SNR < 10)/(number of

satellites)

%(10 ≤ SNR < 20)
(Count of satellites with

(10 ≤ SNR < 20))/(number
of satellites)

%(20 ≤ SNR < 30)
(Count of satellites with

(20 ≤ SNR < 30))/(number
of satellites)

%(SNR ≥ 30)
(Count of satellites with
(SNR ≥ 30))/(number of

satellites)

%(HasAlmanac)
(Count of satellites that has

Almanac)/(number of
satellites)

%(UsedInFix)
(Count of satellites used in

the last fix)/(number of
satellites)

Checking the SNR values for different environments, we
observed that they range from 0 to around 45 units. So, we
decided to group the satellites’ SNR values in groups of 10
units.

The data collection phase lasted for almost a week, col-
lecting GPS data every 5 seconds. The data was stored in
a SQLite Database and exported for further analysis. The
amount of data collected was not sufficient to split the data
set into train and test, we used 10-fold cross-validation.

3.1.2 Data Monitoring
The second step was to do exploratory analysis on the

collected data. With the help of Weka, an open source data
mining software ([21]), some interesting patterns were found.
Figure 2 shows the distribution of the collected instances for
each feature in relation to the indoor/outdoor state.

Figure 2: Histograms of various features

In the figure 2, the blue portion is when the user is indoor

and the red portion is when the user is outdoor. It can be
clearly inferred that some features, such as the one in the
3rd row and 2nd column, have a bad correlation and hence
cannot be used as an input to the classification algorithm.

Having said that, we needed to find the best features for
the algorithm to classify if the user is indoor or outdoor. In
order to do so, we used some attribute evaluation techniques
available in Weka like CorrelationAttributeEval, GainRa-
tioAttributeEval, InfoGainAttributeEval and OneRAttribu-
teEval feature evaluators. As an example, table 3.1.2 shows
the feature rank for the CorrelationAttributeEval algorithm.

Table 1: Correlation Attribute Evaluator
Attribute Correlation

%(SNR ≥ 30) 0.886
AvgSNR 0.874

%(SNR < 10) 0.808
Avg/StdDev(SNR) 0.720
%(20 ≤ SNR < 30) 0.688

StdDevSNR 0.495
%(UsedInFix) 0.487

Accuracy 0.319
%(HasAlmanac) 0.178
FirstT imeToF ix 0.170

%(10 ≤ SNR < 20) 0.134

The first 4 attributes were the same for all evaluators.
They are the best predictors (inputs) for the classification
algorithm to classify if the person is indoor or outdoor.

3.1.3 Classifier
As a next step of the methodology, the selected features

were input to some machine learning classifiers in Weka.
OneR, Logistic Regression, RandomForest and Naive Bayes
were tested, because we were more familiar with these tech-
niques and some of them are simple to implement. The re-
sults of these algorithms can be summarized in table 3.1.3.

Table 2: Classifier results
Algorithm Precision[%] Recall[%]

OneR 97.3 97.2
Logistic Regression 97.1 97.1

Naive Bayes 96.0 96.0
Random Forest 97.0 97.0

All classifiers presented good results. We decided to use
Logistic Regression because it is simple to implement and it
was more robust than OneR in practice. Table 3.1.3 show
the resulting coefficients and the equation 1 shows the logis-
tic function:

P (Indoor) =
1

1 + exp(−(I +
∑4

n=1 cnan))
(1)

In equation 1, cn is the coefficient and an is the associated
attribute value. The evaluation of the classifier is explained
in section 4.

3.2 UV Exposure Tracker
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Table 3: Logistic Regression Result
Attribute Coefficient
AvgSNR -1.19

AvgSNR/StdDev(SNR) -1.18
%(SNR < 10) -27.78
%(SNR ≥ 30) -6.03
Intercept(I) 31.68

In this module, the goal is to develop an app that track
the time the user is outdoor and associate it with the corre-
sponding UV index as well as show this information to the
user. In addition, it is desirable to make it power-efficient
and robust.

Basically, the structure of the app consists of a background
service, that performs all the sensing, classification and UV
tracking tasks; and an activity that handles the interaction
with the user.

The following sections explain the architecture of the main
service and the app interface respectively.

3.2.1 Service Architecture
Figure 3 illustrates the architecture of the background ser-

vice.

Figure 3: Smart UV app architecture

Firstly, it is important to state that the UV index informa-
tion is fetched from the Envirofacts Data Service API ([11])
provided by EPA. As soon as the location sensing module
(implemented with Geocoder and Google Location API [25])
receives an update, it requests the current UV index for that
particular location.

Basically, the service can be triggered manually or auto-
matically. The user has the ability to turn the service on or
off. When it is on, the automatic scheduler is automatically
set. The logic of the automatic scheduler relies on the fact
that the app is supposed to work on times when the UV
index is greater than zero, usually from 8am to 6pm. We
call this period as ”period of interest”. Then, if the UV in-
dex is zero, the service reschedules itself to the beginning of
the next period of interest. Although it is not shown in the
figure 3, the service also schedules the time to turn itself off
when it reaches the end of the period of interest as well as
the next time to run.

If the current UV index is greater than zero, it checks the
proximity sensor to decide which classifier to use. If it de-
tects ”far”, the light classifier is used. The light sensor is
prioritized because of its power efficiency. When the prox-
imity sensor detects ”near”, the light sensor is not available,
than it switches to the GPS classifier.

The GPS classifier is indirectly controlled by the Activity
Recognition Module. This module uses the Activity Recog-
nition Google API ([25], that recognizes the user activity
(still, on foot or in vehicle) mainly based on accelerometer
sensor. The service does not request GPS updates if it de-
tects that the user is still for consecutive readings, avoiding
wasteful GPS power-hungry sensing. If outdoor state is de-
tected, it counts the exposure time, save in the database and
broadcast the information to the user interface.

In terms of coding, the sensing tasks are divided by mod-
ules and it is designed to make it easy to add any additional
module in the future.

3.2.2 Interface
Since the focus of this project was to develop the ubiqui-

tous background portion of the app, a simple interface was
implemented. The figure 3.2.2 shows the two main screens.

(a) Screen 1 (b) Screen 2

The first tab shows the current UV index, along with the
risk level, date and location name. Depending on the risk
level, the screen dynamically update with protection mes-
sages and images based on information got from EPA ([10]
and WHO UV index guides ([9]).
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The second tab shows the period of interest of the day
along with the UV index and the estimated exposure time
for each hour. The ”Tracking” button allow the user to man-
ually turn the main service on or off. For debug purposes,
the screen also shows the current estimated indoor/outdoor
state. Although the ”Date” spinner is present, it is not used
yet. More interface ideas are discussed in section 5.

4. EVALUATION
The idea is to identify if the classification algorithm is

providing accurate results. In order to do so, we collected
the ground truth data from the ”Io Collector” application
presented in section 3.1.1. We walked around various in-
door/outdoor places in the campus of Worcester Polytechnic
Institute (WPI) and got the results from the GPS classifier
with the light classifier disabled and plotted it against the
ground truth data as shown in figure 4.

Figure 4: Evaluation

From the figure, it can be clearly seen that the classifier
is almost as accurate as the ground truth data. There are
some errors, most around the transitions moments. These
errors are mostly due to the delay between the actual state
transition and the sensing timestamp. In this experiment,
the GPS status is collected every 15 seconds on average.
Another major reason for the errors is that there are some
places, such as buildings without walls, that cannot be clearly
classified as indoor or outdoor, making the evaluation and
the classification hard to be defined. The results can be
summarized in the table 4.

Table 4: Evaluation results
Classification Time[s] Percentage[%]

Correct 1663 92.08
Incorrect 146 7.92

Total 1806 -

Given the limited time period for this academic project,
we were not able to evaluate the algorithm under differ-
ent environments neither for longer periods. Evaluating the
same can be done as a part of future work.

5. FUTURE WORK
Smart UV is a promising and practical approach for pro-

viding real-time suggestions and warnings for people with
sensitive skin and who are frequently exposed to sun, via
smartphones. However, a number of limitations in the study
must be overcome before Smart UV becomes ready for wide-
spread usage.

Some of these work that needs to be still developed for
widespread usage is as follows.

5.1 Technical Improvements
Besides some obvious improvements such as bug fixes and

code optimization, some aspects need to be reviewed or en-
hanced. More data should be collected for classification and
evaluation under different environments. In terms of eval-
uation, the data collection model including all sensor mod-
ules should be tested against the GPS-only version, the app
should be tested in real-life situations and explore more ways
to evaluate the app performance such as battery-consumption
analysis.

5.2 Short-Term
Smart UV already provides good basement to implement

many additional features. In a short-term future it is possi-
ble to add some visuals of daily UV index and sun exposure
history. For example, Figure 5, taken from [9], show an
example of daily UV index information

Figure 5: UV Visualization

In addition, the application could provide tailored alerts
and notifications based on the accumulated sun exposure
time and user skin type ([24]). The app can provide auto-
matic alerts when the user may get sunburned and remind
them to reapply the sunscreen. Figure 6, taken from [22]
show one way to model the sunburn time for each skin type
and UV index.

5.3 Long-Term
As a long term prospective, it is possible to aggregate more

sensors to the indoor/outdoor classifier such as magnetic
field sensors and GSM signal strength as explored in [12],
cell tower and WiFi mapping ([13]) as well as Bluetooth
([14]). In addition, based on the collected data, temperature
sensors can also be useful in situations when the temperature
outside is very low or very high.

Other way to improve the application would be implement
solar radiation models, as explored in [23], that estimate the
user sun exposure based not only on location, but also on
the sun’s position, weather condition and information from
the surrounding buildings to infer if the person is in shade
or not.
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Figure 6: Sunburn time by skin type and UV Index

Interesting additional features can be added. Using the
front-camera, the app could automatically detect if the user
is wearing an hat or sunglasses to protect himself from harm-
ful UV radiations and warn him if he is not wearing any pro-
tection. One more feature could be to automatically classify
the skin type and identify malignant melanomas using cam-
era.

6. CONCLUSIONS
In this project, we successfully developed an application

that detects when the user is indoor or outdoor to estimate
their UV exposure, and provide some precaution alerts. We
also developed an efficient indoor/outdoor classifier using
supervised machine learning algorithms based on GPS sen-
sor data. To accomplish this, an additional general-purpose
application, called ”IO Collector” was developed to collect
data for indoor/outdoor classifiers. Smart UV and IO Col-
lector can be easily adapted to any indoor-outdoor detection
application and provide accurate results.

The resulting GPS classifier was combined with other fea-
tures such as light sensor, proximity sensor, activity recogni-
tion and automatic scheduling, resulting in a power-efficient
and accurate data collection model. Along with the UV in-
dex information requested online, we display the estimated
exposure time as well as general advises based on the current
UV index.

Finally, we propose many ways to improve the applica-
tion, showing that Smart UV is a promising app that deeply
explore ubiquitous and mobile computing to help people, es-
pecially who has sensitive skin or is frequently exposed to
sun, to protect themselves against the dangerous effects of
UV radiation.
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