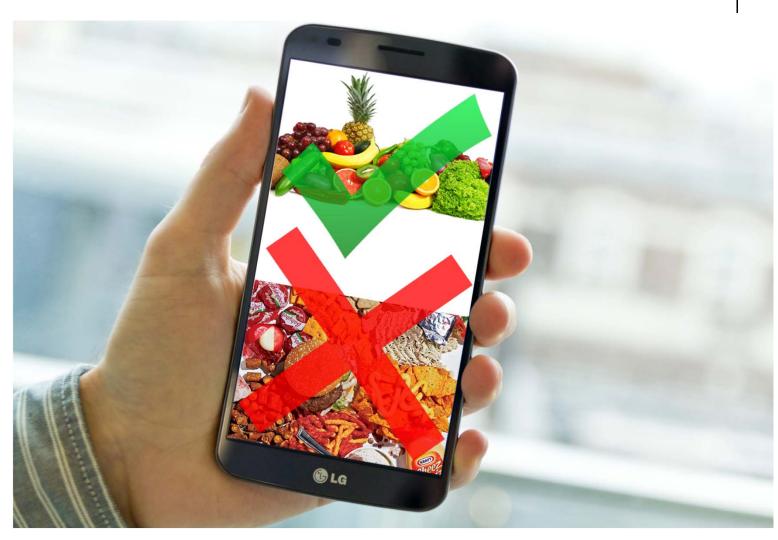
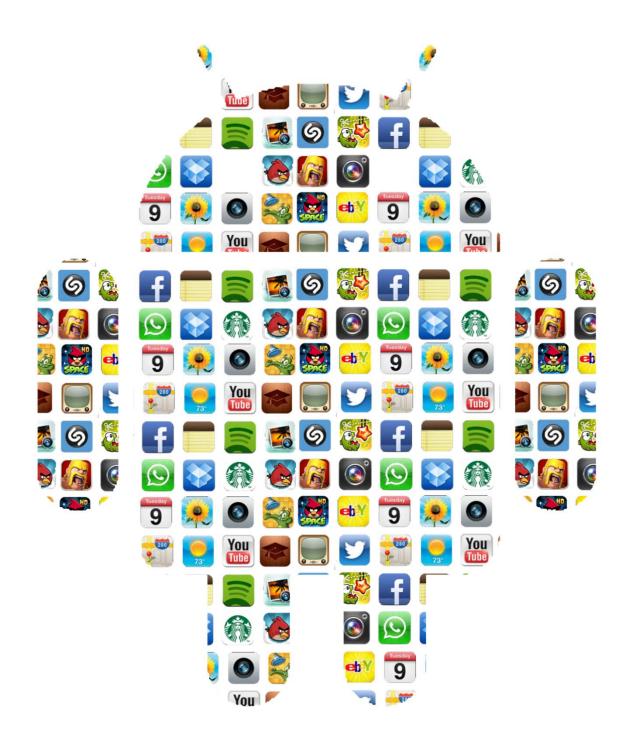
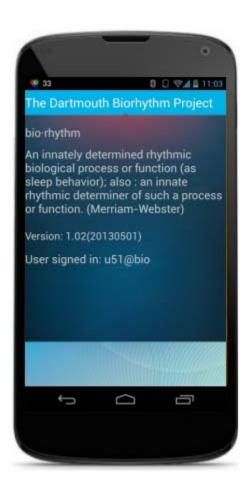
Ubiquitous and Mobile Computing CS 528: My Smartphone Knows I am Hungry

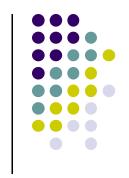
Hoang Ngo

Computer Science Dept. Worcester Polytechnic Institute (WPI)


Smartphone and Unhealthy Eating






- 25 Students
- 10 weeks
- Run in background 24/7
- Collect:
 - Conversation
 - Physical activity
 - Sleep
 - Location
 - Wifi scan log & Bluetooth colocation

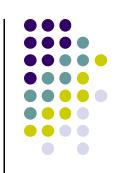
Result

 After 3 week training data, we can predict food purchases with accuracy

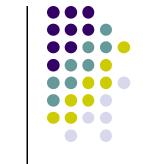
74%

Other related researches

Differences



MyNe	tDiary	< 02	/10/	13	×	F 1	ood E Plan 098	Man	Food E	xercise 743	Remainin 463	<u>Sign</u>	Off
PLAN FOOI	<u>E</u> XERCISE	DETAI	DETAILS		ES	S <u>C</u> HAR		T REPOR		COMMUNITY		CCOUNT	
Food My New Food Datails	Undo Redo C	Delete Pris	nt Sel	ect He	lp H	2) elp							
Consumed Food	Consumed Amount	Grams or Amounts	Cals	Food Score	Fat g	Carbs	Proteir g	Sat Fat	Choles terol mg	Sodium mg	Sugars g	Diabetes Carbs g	Time
Breakfast Same R	ecent Recipe		324		15	6	4	0 7	141	353	4	6	
roast lamb	5.5 oz	156g	207	2.1	8	0	3	2 3	103	103	0	0	8:00
napa cabbage	100 gram	100g	22	3	0	4		2 () (22	2	4	8:00
Goat cheese	2 oz	57g	94	-1.5	7	2		6 5	38	3 227	2	2	8:00
Lunch Same R	ecent Recipe		660		40	43	4	6 19	121	773	8	36	
✓ roast lamb	5.5 oz	156g	207	2.1	8	0	3	2 3	103	103	0	0	13:00
<i>>></i> daikon	150 gram	150g	34	3.4	0	7		0 () (34	3	7	13:00
so delicious toasted	0.5 cup	85g	140	1.2	12	18		2 9		80	1	13	13:00
blue hill bay herring fillet marinated	in dill 5 pieces	55g	70	-0.5	3	3		8 1	18	550	3	3	13:00
Foods saved: 10	10 amounts		984		55	49	8	6 27	263	1125	12	42	
Remained in food plans	:		114		-21	95	-3	1		7875			
Calories ratio:					48%	19%	339	6					


Simple binary classification problem

Buying

NOT Buying

Methodology

Collect Training Data Train
Prediction
Model

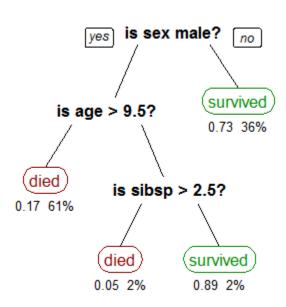
Online **Predict**

Collect Data Training

Features

- + Physical activity
- + Sociability

- + Current building
- + Arrival time

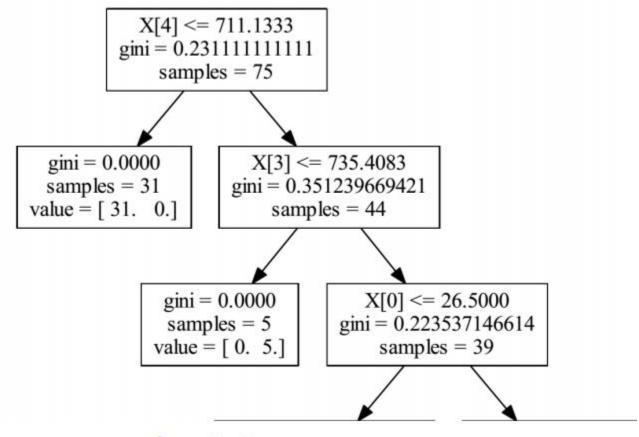

Why?

$$I_G(f) = \sum_{i=1}^m f_i(1 - f_i) = \sum_{i=1}^m (f_i - f_i^2) = \sum_{i=1}^m f_i - \sum_{i=1}^m f_i^2 = 1 - \sum_{i=1}^m f_i^2$$

Classification and Regression Tree (CART)

Gini impurity

Predict

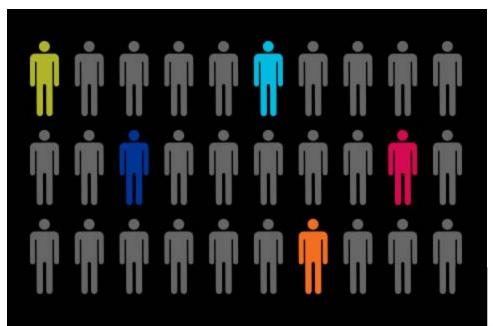


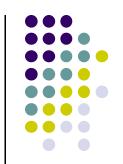
Design

• CART + Gini Impurity

Prediction Model and Traversal

decision tree



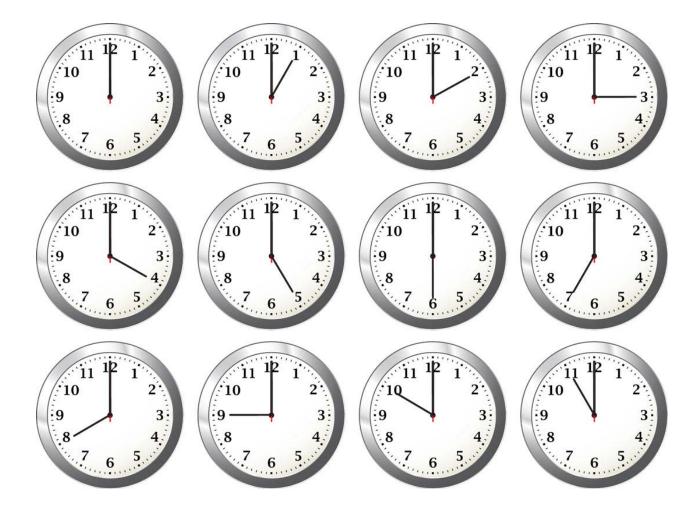

Can we do better?

Implementation Enhancement

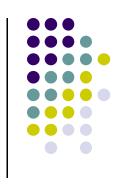
- Personalization
- Adaptation

Behaviors
Schedules
Locations

Implementation Enhancement



- Personalization
- Adaptation



Results

- Importance of different features (top 6)
- Prediction Performance

Results

- Importance of different features (top 6)
 - Current building
 - Arrival time at current building
 - Departure time from previous building
 - Activity ratio in last building
 - Departure time from current building
 - Conversation duration
- Prediction Performance

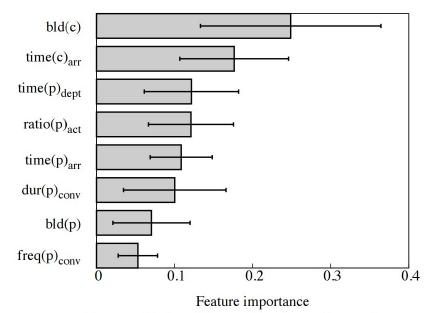
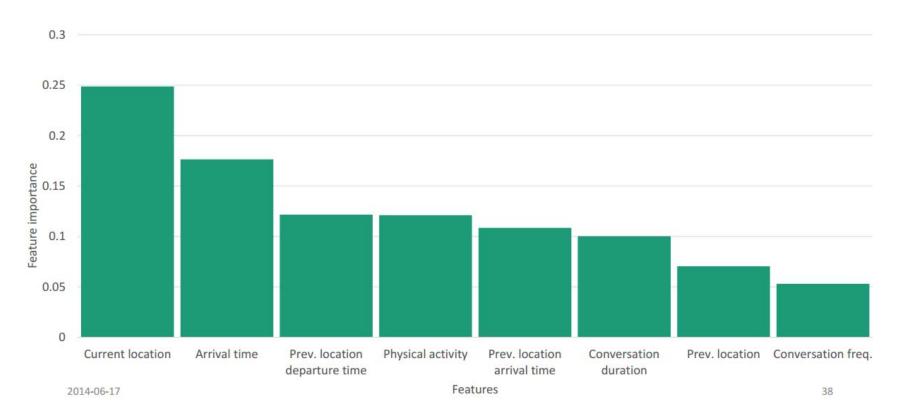
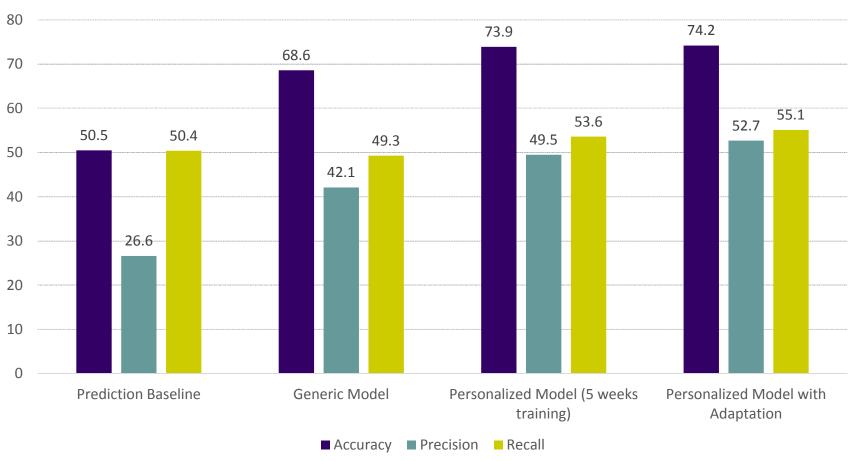



Figure 2: Ranking of feature importance.

Results

- Importance of different features (top 6)
- Prediction Performance


Terminology

- Accuracy measures how well a binary classification test correctly identifies labels
- Precision measures the probability that a test case given positive label is truly positive
- Recall measures the probability that a positive case can be identified by the classifier

Prediction Performance

Personalized Model without Adaptation

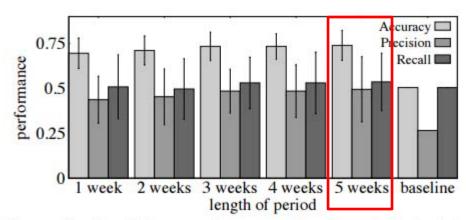


Figure 3: Prediction performance for the static training set.

Personalized Model with Adaptation

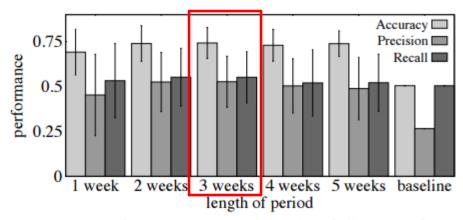


Figure 4: Prediction performance for different adaption periods.

Conclusion

- Feature importance
- Model to predict eating habit

- To generalize the work, explore more features for prediction of more types of food purchases
 - Purchase cost
 - Purchase type
 - Total number of daily purchase instance
- New target users: Office workers
- How to unobtrusively detect eating?
- Food intervention

References

- Amft, O., and Tröster, G. Recognition of dietary activity events using on-body sensors. Artificial Intelligence in Medicine 42, 2 (2008), 121–136.
- Flegal, K. M., Carroll, M. D., Ogden, C. L., and Johnson, C. L. Prevalence and trends in obesity among us adults, 1999-2000. Jama 288, 14 (2002), 1723–1727.
- Hebden, L., Cook, A., van der Ploeg, H. P., and Allman-Farinelli, M. Development of smartphone applications for nutrition and physical activity behavior change. JMIR Research Protocols 1, 2 (2012).
- Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. Classification and regression trees. CRC press, 1984
- Feunekes, G. I., de Graaf, C., Meyboom, S., and van Staveren, W. A. Food choice and fat intake of adolescents and adults: associations of intakes within social networks. Preventive medicine 27, 5 (1998), 645–656.
- Lowry, R., Galuska, D. A., Fulton, J. E., Wechsler, H., Kann, L., and Collins, J. L. Physical activity, food choice, and weight management goals and practices among us college students. American Journal of Preventive Medicine 18, 1 (2000), 18–27
- Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., and Hamprecht, F. A. A comparison of random forest and its gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC bioinformatics 10, 1 (2009), 213.
- Reddy, S., Parker, A., Hyman, J., Burke, J., Estrin, D., and Hansen, M. Image browsing, processing, and clustering for participatory sensing: lessons from a dietsense prototype. In Proceedings of the 4th workshop on Embedded networked sensors (2007), ACM, pp. 13–17.
- Rabbi, M., Ali, S., Choudhury, T., and Berke, E. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In Proceedings of the 13th international conference on Ubiquitous computing (2011), ACM, pp. 385–394.
- Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., and Campbell, A. T. StudentLife: Assessing mental well-being, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM Conference on Ubiquitous Computing (2014), ACM.