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Smartphone and Unhealthy Eating | :
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e Run in background 24/7
e Collect:

User signed in: ub1@bio

e Conversation
e Physical activity

1

e Location

e Wifi scan log & Bluetooth colocation






Result s

e After 3 week training data, we can predict food
purchases with accuracy

(4%



Other related researches




Differences




Differences o

Food Exercise
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Simple binary classification
problem




Methodology °

Collect Train :
Online

Predict

Training Prediction
Data Model




Collect Data Training .

Features

{ PREV | Curr »

+ Physical activity + Current building
+ Sociability + Arrival time




Why?




Train Prediction Model :

is sex male?

is age > 957 . m i . m ) 5. m ) m 5 m Y
\ 0.73 36% I(f)=> fill=f)=>(fi—-f5)=>_fi-> fi*=1=-) f°
i=1 i=1 i=1 i=1 i=1
‘

is sibsp » 2.57

017 B61%

0.05 2% 0.89 2%

Classification and Regression Tree

(CART) Gini impurity

http://en.wikipedia.org/wiki/Decision_tree_learning#Gini_impurity



Predict




Design

e CART + Gini Impurity




X[4] <=T711.1333
gini = 0.231111111111
samples = 75

VAR

Prediction Model and Traversal

gini = 0.0000 X[3] <= 735.4083
samples = 31 gini = 0.351239669421
value=[ 31. 0.] samples = 44
gini = 0.0000 X[0] <= 26.5000
samples = 5 gini = 0.223537146614
value=[0. 5.] samples = 39

VAN

decision tree



Can we do better?




Implementation Enhancement

e Personalization
e Adaptation




Schedules
Locations



Implementation Enhancement | :

e Personalization
e Adaptation




Eating time in a month




Results

e Importance of different features (top 6)

e Prediction Performance
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e Importance of different features (top 6)
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Feature importance
Figure 2: Ranking of feature importance.



Feature importance
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Results

e Prediction Performance




Terminology

e Accuracy measures how well a binary
classification test correctly identifies labels

e Precision measures the probability that a test
case given positive label is truly positive

e Recall measures the probability that a positive
case can be identified by the classifier
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Personalized Model without
Adaptation
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Figure 3: Prediction performance for the static training
set.



Personalized Model with
Adaptation
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Figure 4: Prediction performance for different adaption
periods.




Conclusion

e Feature importance

e Model to predict eating habit




Future Researches

e To generalize the work, explore more features for
prediction of more types of food purchases

Purchase cost
Purchase type
Total number of daily purchase instance

e New target users: Office workers
e How to unobtrusively detect eating?

e Food intervention
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