Ubiquitous and Mobile Computing

CS 528: MobileMiner

Mining Your Frequent Behavior Patterns on Your Phone

Muxi Qi

Electrical and Computer Engineering Dept.
Worcester Polytechnic Institute (WPI)
OUTLINE

• Introduction
• System Design
• Evaluation
 • Performance
 • Pattern Utility
• Example Use Cases: App and Call Prediction
• Related Work
• Conclusion
The Goal:

- Long Term: Novel middleware and algorithms to **efficiently** mine user **behavior patterns** entirely on the **phone** by utilizing **idle processor cycles**.
- In This Paper: [MobileMiner](#) on the phone for frequent co-occurrence patterns.
INTRODUCTION

- Idea Inspiration:
 - We can log raw contextual data.
 - Previous:
 - Location & physical sensor data
 - Higher level user context
 - Now:
 - Higher level behavior patterns from a long term
 - Why Behavior Patterns?
 - Personalize & improve user experience.
INTRODUCTION

- How to Achieve
 - Co-occurrence Patterns & Their Utility
 - Useful
 - In association rules: easily used & *if-this-then-that*
 - {Morning; Breakfast; At Home} -> {Read News}
 - Smartphone Computing Potential
 - Powerful quad-core processors & unused for a majority of time
 - Privacy guarantees (not cloud)
 - Cloud connectivity constrain

![Graph showing idle time per day (in hours) with WeekDay and WeekEnd bars for different users.](image-url)
INTRODUCTION

Main Contributions:
- System Design
- System Performance
- Patterns’ Utility Analysis
- UI Improvement Implementation
SYSTEM DESIGN

- Platform: Tizen Mobile
 - Tizen:
 - Open and flexible Linux Foundation operating system.
SYSTEM DESIGN

- **System Architecture**
 - **Frequent Pattern Formulation:**
 - Association Rule. \(\{A: \text{Antecedents}\} \rightarrow \{B: \text{Consequence}\} \)
 - **Threshold:**
 - Support: \(P(AB) \); Confidence: \(P(B|A) \)
 - **Baskets: Time Stamped**
 - **Mining Algorithm:**
 - WeMiT, not Apriori
 - Weighted Mining of Temporal Patterns
 - **Filters**
 - **Predictions: Prediction Engine.**
 - **Schedule: Miner Scheduler**
SYSTEM DESIGN

- Basket Extraction:
 - Discretization (Categorical Data) => Baskets Extraction

- Basket Filtering
 - Using Boolean expression, utility functions
 - Benefits:
 - More accurate prediction
 - Faster
 - Free of noise
SYSTEM DESIGN

- Rule Mining:
 - Apriori Algorithm: “Bottom Up”
 - All subsets of a frequent itemset are also frequent itemsets.
 - Baskets over several months -> hours analysis
SYSTEM DESIGN

- Rule Mining:
 - WeMiT: “Repeated Nature”
 - \[B = \{ b_1^{w_1}, b_2^{w_2}, \ldots, b_n^{w_n} \}; \sum_{i=1}^{n} \text{contain}(b_i^{w_i}, X), w_i, \]
 - 92.5% reduction by compression
 - 15 times reduction in average running time
SYSTEM DESIGN

- **Context Prediction**
 - Novelty: 1 second return prediction
 - Input: \{Morning; At Work\} & \{Using Gmail; Using Outlook\}
 - Rule:
 - \{Morning\} -> \{Gmail\} 90%
 - \{At Work\} -> \{Gmail\} 80%
 - \{Morning; At Work\} -> \{Outlook\} 90%
 - Ranking Order: Confidence
 - Same target?
 - Same confidence?
EVALUATION - Context Data

- Participants:
 - 106 (healthy mix of gender and occupation), 1 - 3 months
- Collector: EasyTrack using Funf sensing library
- Results:
 - 440 Unique Context Events
 - Active participants?

![Graph showing number of users by number of days of data collection]

- Number of users
- Number of days of data collection
- <= 20, 21-40, 41-60, 61-80, >=81
EVALUATION - Context Data

- Focused Context Events
 - <call type="""" duration="""" number="""">
 - <SMS type="""" number="""">
 - <placeIdentifier place="home">
 - <location clusterLabel=""">
 - <charging status=""">
 - <battery level=""">
 - <foreground app=""">
 - <connectivity type="WiFi">
 - <cellLocation id=""">
 - <movement status="1"
EVALUATION - Performance

- MobileMiner, Tizen phone (==Samsung Galaxy S3)
 - Feasibility
 - Data: 28 representative users, 2 - 3 months.
 - Threshold: Base 1% Support, App 20 Support
 - Compression Reduction: 92.5% and 55%
 - Energy(7.98Wh): 0.45% and 0.01% weekly, 3.09% and 0.05% daily

<table>
<thead>
<tr>
<th>Performance Metric</th>
<th>Base Basket Extraction</th>
<th>Base Rule Mining</th>
<th>App Usage Filtering</th>
<th>App Usage Rule Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time</td>
<td>1.7 seconds</td>
<td>16.5 minutes</td>
<td>1.4 seconds</td>
<td>21.2 seconds</td>
</tr>
<tr>
<td>Memory</td>
<td>9.9 MB</td>
<td>44.2 MB</td>
<td>11.6 MB</td>
<td>1.0 MB</td>
</tr>
<tr>
<td>CPU Utilization</td>
<td>22.9 %</td>
<td>24.3 %</td>
<td>20.8 %</td>
<td>21.9 %</td>
</tr>
<tr>
<td>Number of baskets or rules</td>
<td>114275 baskets 8559 compressed</td>
<td>46675 rules</td>
<td>752 baskets 327 compressed</td>
<td>1062 rules</td>
</tr>
<tr>
<td>Energy per day as % of full battery</td>
<td><0.01 %</td>
<td>0.45 %</td>
<td><0.01 %</td>
<td>0.01 %</td>
</tr>
</tbody>
</table>
EVALUATION - Performance

- MobileMiner, Tizen phone (==Samsung Galaxy S3)
 - Comparison:
 - Data: 13 users
 - Short Duration Activities: 20 min (Apriori) vs 78.5 sec (WeMiT)
EVALUATION - Pattern Utility

- Sample Patterns
 - Data: sample user #38
 - Threshold: 1% Support
 - Greyscale: Confidence
 - Utility: Provide shortcut for next contact
EVALUATION - Pattern Utility

- Common patterns
 - Threshold: 80% confidence 1% support
 - Greyscale: Percentage of users the pattern occurs in
 - Utility:
 - Initial set of patterns while MobileMiner is learning slowly
- Future:
 - schedule group activity; individual recommendation service
EXAMPLE USE CASE

- App and Call Prediction
 - Benefit: Lessen the Burden
 - Feature:
 - Show pattern
 - Evaluation Metrics
 - Recall: of total usage
 - Precision: of popups
 - Setting Parameter:
 - Shortcut #
 - Confidence Threshold
EXAMPLE USE CASE

- Recall-Precision Tradeoff
 - Data: 106 for App, 25 for Call
 - MM vs Majority: 89%-184% improvement
 - App vs Call: why?
 - limited data
 - less predictable calling pattern

![Graphs showing recall vs precision for different data sets and algorithms.](attachment:graphs.png)

(a) App prediction.
(b) Effect of support on app prediction with 3 recommendations.
(c) Call prediction.
EXAMPLE USE CASE

- Recall-Precision Tradeoff
 - Support Threshold
 - Precision: 4-5% improvement
 - Rules of only 5 times may potentially be useful in improving precision
 - Time: 12.4, 37.1, 174.8, 2218.2 sec
EXAMPLE USE CASE

- User Survey
 - Participants: 42 from 106, online
 - Limitation:
 - using not app but explanation with screenshots
 - Conclusion:
 - Positive response
 - Recall - Precision Tradeoff differs

-> a configurable app

<table>
<thead>
<tr>
<th>Precision</th>
<th>No. of recommendations</th>
<th>Recall</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>3</td>
<td>35%</td>
<td>30.95%</td>
</tr>
<tr>
<td>80%</td>
<td>3</td>
<td>51%</td>
<td>16.67%</td>
</tr>
<tr>
<td>80%</td>
<td>5</td>
<td>68%</td>
<td>23.81%</td>
</tr>
<tr>
<td>80%</td>
<td>7</td>
<td>80%</td>
<td>11.90%</td>
</tr>
<tr>
<td>75%</td>
<td>3</td>
<td>66%</td>
<td>4.76%</td>
</tr>
<tr>
<td>75%</td>
<td>5</td>
<td>87%</td>
<td>11.9%</td>
</tr>
<tr>
<td>75%</td>
<td>7</td>
<td>100%</td>
<td>19.05%</td>
</tr>
</tbody>
</table>
EXAMPLE USE CASE

- User Survey (Detailed Results)
 - Usage Frequency
 - Regularly 57%; Sometimes 42%
 - Shortcut
 - Lock screen 40%; Quick panel 26%; Main tool bar 33%
 - 100% Recall or less for Precision?
 - Recall 9%; Precision 54%; Either 35%
 - Icon Number
 - 4-6 71%; 1-3 26%
 - Tradeoff

<table>
<thead>
<tr>
<th>Precision</th>
<th>No. of recommendations</th>
<th>Recall</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>3</td>
<td>35%</td>
<td>30.95%</td>
</tr>
<tr>
<td>80%</td>
<td>3</td>
<td>51%</td>
<td>16.67%</td>
</tr>
<tr>
<td>80%</td>
<td>5</td>
<td>68%</td>
<td>23.81%</td>
</tr>
<tr>
<td>80%</td>
<td>7</td>
<td>80%</td>
<td>11.90%</td>
</tr>
<tr>
<td>75%</td>
<td>3</td>
<td>66%</td>
<td>4.76%</td>
</tr>
<tr>
<td>75%</td>
<td>5</td>
<td>87%</td>
<td>11.9%</td>
</tr>
<tr>
<td>75%</td>
<td>7</td>
<td>100%</td>
<td>19.05%</td>
</tr>
</tbody>
</table>
RELATED WORK

● Association Rule and Frequent Itemset Mining
 ● In the cloud or desktop
 ● Our: On-device mining

● Context-ware Computation on Mobile Devices
 ● Inferring activity, location, proximity
 ● ACE (Acquisitional Context Engine) System:
 ● Server-based, without optimized algorithm
 ● Privacy, data cost, and latency
 ● Our: concerning long term context, on-device
RELATED WORK

● Prediction Approaches
 ● Compare to Others, Ours has:
 ● more generalizable approach
 ● more configurability
 ● more tolerance to missing context events
 ● more readable patterns

● A preliminary Version (Poster)
References

References

References

References

References

References

QUESTIONS AND DISCUSSION

Thank you!