CS 528 Mobile and Ubiquitous Computing Lecture 1: Introduction

Emmanuel Agu

A Little about me

- Faculty in WPI Computer Science
- Research interests:
 - mobile computing especially mobile health, computer graphics
- How did I get into mobile and ubiquitous computing
 - 3 years in wireless LAN lab (pre 802.11)
 - Designed, simulated, implemented wireless protocols
 - Group built working wireless LAN prototype (pre 802.11)
- Computer Systems/Electrical/Computer Science background
 - Hardware + software
- Current active research: Mobile health apps

About this class (Administrivia)

- Class goal: overview, insight into hot topics, ideas and issues in mobile and ubiquitous computing
- Focus: implement ideas on Android smartphone
- Semester break: March 10 (no class)
- Website: http://web.cs.wpi.edu/~emmanuel/courses/cs528/S13/
- Projects: 3 assigned, 1 big final project
- This area combines lots of other areas: (networking, OS, software, machine learning, programming, etc)
 - Most students don't have all the background!!
 - Independent learning is crucial!
 - Final Projects: Make sure your team has requisite skills

Administrivia: Schedule

- Week 1-6: I will present (course introduction, Android programming)
- Weeks 7 8: Students will present papers
 - Goal: examine cutting edge research ideas
 - Student talks short and direct (~15 minutes)
 - Discussions
- Week 9: Students propose final project
- Weeks 10-13: Students present more papers
- Week 14: Students present + submit final projects
- Each week, 15-min break halfway

Formal Requirements

- What do you have to do to get a grade?
- Seminar: Come to class + Discuss + Do good projects!!
- Each student will present 1 or 2 papers
- Weeks 7-8,10-13: Submit summaries for any 2 of week's papers
- Do projects: assigned and final project(s)
- Final project: 5-phases (See website for deadlines)
 - Pick partner + decide project area
 - Brainstorm on ideas
 - Submit intro + related work + proposed project plan (week 9)
 - Build, evaluate, experiment, analyze results
 - Present results + submit final paper (in week 14)
- Grading policy: Presentation(s) 15%, Class participation 5%,
 Assigned Projects 25%, Final project: 40%, Summaries: 15%

Written Summaries

- Submit using turnin before class
- Summarize key points of any 2 of papers for week
 - Main ideas
 - Limitations of the work
 - What you like/not like about paper
 - Any project ideas?
- Half a page max per paper
- Summary should quickly refresh memory in even 1 year's time
 - Include main ideas/algorithms, results, etc.
- See handout for more details

Course Text

- **Text:** The Busy Coder's Guide to Android to Android Development by Mark Murphy version 6.3 (Covers Android version 5.0)
- Android API changes often, so book uses annual subscription
- U\$45 annual subscription gives 1 year access to book updates
- Free to all registered students in this class!!
- Many different formats of book (pdf, apk file, kindle, etc)
- Lots of free working demo apps available on github
 - http://github.com/commonsguy/cw-omnibus
- Divided into core sections and trails (optional)
 - Core sections: must be followed in sequence
 - **Trails:** Can be read in any order

- How many students:
 - Own Android phones
 - Can borrow Android phones for projects (e.g. from friend/spouse)?
 - Do not own and cannot borrow Android phones for projects?

Mobile vs Ubiquitous Computing

Mobile computing

- mostly passive network components
- Human computes while moving, continuous network connectivity
- Note: Human initiates all activity, clicks on apps!!
- **Example:** Using *foursquare.com* on smart phone

Ubiquitous computing

- Collection of specialized assistants to assist human in tasks (reminders, personal assistant, staying healthy, school, etc)
- Array of active elements, sensors, software agents, artificial intelligence
- Builds on mobile computing and distributed systems (more later)
- Note: System/app initiates activities, inference
- Example: Google Now on smartphone

- Sense what?
 - Human: motion, mood, identity, gesture
 - Environment: temperature, sound, humidity, location
 - Computing Resources: Hard disk space, memory, bandwidth
 - Ubicomp example:
 - Assistant senses: Temperature outside is 10F (environment sensing) + Human plans to go work (schedule)
 - Ubicomp assistant advise: Dress warm!
- Sensed environment + Human + Computer resources = Context
- Context-Aware applications adapt their behavior to context

Sensing the Human

- Environmental sensing is relatively straight-forward
 - Use specialized sensors for temperature, humidity, pressure, etc
- Human sensing is a little harder (ranked easy to hard)
 - When: time (Easiest)
 - Where: location
 - Who: Identification
 - How: (Mood) happy, sad, bored (gesture recognition)
 - What: eating, cooking (meta task)
 - Why: reason for actions (extremely hard!)
- Human sensing (gesture, mood, etc) easiest using cameras
- Research in ubiquitous computing integrates
 - location sensing, user identification, emotion sensing, gesture recognition, activity sensing, user intent

Mobile Devices

- Smart phones (Blackberry, iPhone, Android, etc)
- Tablets (iPad, etc)
- Laptops

SmartPhone Hardware

- Communication: Talk, text, Internet access, chat
- Computing: Java apps, JVM, apps
 - Powerful processors: Quad core CPUs, GPUs
- Sensors/Multimedia: Camera, video, accelerometer, etc
- Smartphone = Communication + Computing + Sensors
- Google Nexus 5 phone: Quad core 2.5 GHz CPU, Adreno 330 GPU

	Nexus 4	Galaxy S III	iPhone 5	Moto Droid
CPU	APQ8064	MSM8960	Apple A6	OMAP 3430
	I.7 GHz Quad -core	I.7 GHz Dual-core	I.3 GHz Dual-core	600 MHz
GPU	Adreno 320	Adreno 225	PowerVR SGX543MP3	PowerVR SGX 530
	OpenGL ES 3.0 OpenCL 1.2 OpenVG 1.1	OpenGL ES 2.0 OpenVG 1.1	OpenGL ES 2.0 Shader Model 4.1	OpenGL ES 2.0 Shader Model 4.1
	NA 40-45 GFLOPS	400 MHz 19.2 GFLOPS	266 MHz (Tri -core) 25.5 GFLOPS	200 MHz (1.6 GFLOPS)

GLOPS: floating-point operations per second

Comparison courtesy of Qian He (Steve)

- Typical smartphone sensors today
 - accelerometer, compass, GPS, microphone, camera, proximity

Future sensors?

- Heart rate monitor,
- Activity sensor,
- Pollution sensor,
- etc

SmartPhone OS

- Over 80% of all phones sold are smartphones
- Android share 78% worldwide
- iOS 18%

Global Smartphone Market Share By Platform 100% 90% Other 80% 70% Share of Global Unit Sales 60% 50% **BlackBerry** 40% **Apple iOS** Microsoft **Android** 20% 10% 0% Q1 Q2 Q3 Source: IDC, Strategy Analytics

Ubiquitous Computing: Wearable sensors for Health

remote patient monitoring

External Sources of Data

Body Worn Activity Trackers

Bluetooth Wellness Devices

Explosion of Devices

- Recent Nokia quote: More cell phones than tooth brushes
- Many more sensors envisaged
- Ubiquitous computing: Many computers per person

The Major Trends in Computing

Definitions: Portable, mobile & ubiquitous computing

- Distributed computing: system is physically distributed. User can access system/network from various points. E.g. Unix, WWW. (huge 70's revolution)
- Portable (nomadic) computing: user intermittently changes point of attachment, disrupts or shuts down network activities
- Mobile computing: continuous access, automatic reconnection
- Ubiquitous (or pervasive) computing: computing environment including sensors, cameras and integrated active elements that cooperate to help user
- Class concerned mostly with mobile and ubiquitous computing

Distributed Computing

 Distributed computing example: You, logging in and web surfing from different terminals on campus (library, your dorm room, etc). Each web page consists of hypertext, pictures, movies anywhere on the internet.

Note: network is fixed, Human moves

Issues:

- Remote communication (RPC),
- Fault tolerance,
- Availability (mirrored servers, etc)
- Caching (for performance)
- Distributed file systems (e.g. Network File System (NFS)
- Security (Password control, authentication, encryption)

Portable (Nomadic) Computing

- Portable (nomadic) computing example: I own a laptop. Plugs into my home network, surf web while watching TV. In the morning, bring laptop to school, plug into WPI network, start up!
- Note: Network is fixed, device moves and changes point of attachment, no computing while moving

Issues:

- File/data pre-fetching
- Caching (to simulate availability)
- Update policies
- Re-integration and consistency models
- Operation queuing (e.g. emails while disconnected)
- Resource discovery (closest printer while at home is not closest printer while at WPI)

Mobile Computing Example

- Mobile computing: John owns SPRINT PCS phone with web access, voice, SMS messaging. He runs apps like facebook and foursquare and remains connected while walking around Boston
- Note: Network topology changes, because sarah and mobile users move. Network deals with changing node location
- Issues
 - Mobile networking (mobile IP, TCP performance)
 - Mobile information access (bandwidth adaptive)
 - System-level energy savings (variable CPU speed, hard disk spin-down, voltage scaling)
 - Adaptive applications: (transcoding proxies, adaptive resource resource management)
 - Location sensing
 - Resource discovery (e.g. print to closest printer)

Ubiquitous Computing Example

- Ubiquitous computing: John is leaving home to go and meet his friends. While passing the fridge, the fridge sends a message to his shoe that milk is almost finished. When John is passing grocery store, shoe sends message to glasses which displays "BUY milk" message. John buys milk, goes home.
- Core idea: ubiquitous computing assistants actively help John
- Issues:
 - Sensor design (miniaturization, low cost)
 - Smart spaces
 - Invisibility (room million sensors, minimal user distraction)
 - Localized scalability (more distant, less communication)
 - Uneven conditioning
 - Context-awareness (assist user based on current situation)
 - Cyber-foraging (servers augment mobile device)
 - Self-configuring networks

Location-Aware App: Yelp

- Example search: Find Indian restaurant
- App checks user's location
- Indian restaurants close to user's location are returned

- [Hapori: Context-based Local Search for Mobile Phones using Community Behavioral Modeling and Similarity, Nicholas D. Lane, Dartmouth College]
- Goal: Improves mobile search results using context, such as weather, age, profile of user, time, location and profile of other users to improve search.
- **Example:** a teenager gets a completely different set of recommendations from and elder.

- Translates signs in foreign Language
- Location-dependent because sign location varies

Desktop or Internet App on Mobile NOT Really Mobile Computing

- Some apps run on mobile phone just for convenience
- No location-dependent, context-dependent inputs.
- Not really mobile computing apps
- Examples:

Internet Retailer app

Diet recording app

Energy Efficiency

 Most resources increasing exponentially except battery energy (ref. Starner, IEEE Pervasive Computing, Dec 2003)

Some Strategies:

Figure 1. Improvements in laptop technology from 1990–2001.

- Energy harvesting: Energy from vibrations, moving humans
- Scale content: Reduce image, video resolutions to save energy
- Better user interface: Estimate and inform user how long each potential task will take
 - E.g: At current battery level, you can either type your paper for 45 mins, watch video for 20 mins, etc

Mobile CrowdSensing

- Internet of things: Sensing data from consumer-centric devices including
 - Smartphones (iPhone, Google Nexus,)
 - Music players (iPods)
 - Sensor embedded gaming systems (Wii, Xbox, kinect)
 - In-vehicle sensors (GPS)
 - Body-worn sensors (e.g. fitbit, Nike+)
- Mobile crowdsensing: sense these devices
 - personal, community- and Internet-wide
- Sensing applications at community scale possible

Mobile CrowdSensing

- Personal sensing: phenomena pertain to individual
 - E.g: activity detection and logging for health monitoring
- Group: friends, co-workers, neighborhood
 - GarbageWatch to improve recycling, neighborhood surveillance
- Community sensing (mobile crowdsensing):
 - Large-scale phenomena monitoring
 - Many people contribute their individual readings
 - Examples: Traffic congestion, air pollution, spread of disease, migration pattern of birds, city noise maps

Mobile CrowdSensing Types

- Participatory sensing: active involvement of individuals (e.g taking a picture, reporting potholes)
- Opportunistic sensing: passive user involvement (continuous location sampling without explicit user action)

Mobile Crowd Sensing

- Classic example: Comparative shopping
- At CVS, ready to buy toothpaste. Is CVS price the best locally?
- Phone has software to query other members of my network
- People at other local stores (Walmart, Walgreens, etc) respond with prices

- Environmental: pollution, water levels in a creek
- Transportation: traffic/road conditions, available parking
- City infrastructure: malfunctioning hydrants and traffic signs
- Social: photoblogging, share bike route quality, petrol price watch
- Health and well-being:
 - Share exercise data (amount, frequency, schedule),
 - share eating habits and pictures of food

Mobile Phone Sensing Architecture

- Sense: Phones collect sensor data
- Learn: Information is extracted from sensor data by applying machine learning and data mining techniques
- Inform, share and persuasion: inform user of results, share with group/community or persuade them to change their behavior

Sensor Processing

- Machine learning commonly used to process sensor data
 - Action to be inferred is hand-labelled to generate training data
 - Actual data is mined for combinations of sensor readings corresponding to action

Sensing Human Behavior

- [Social Sensing for Epidimiological Behavior Change, Anmol Madan et al, MIT Media Lab]
- Goal: infer how falling sick affects the [mobile/network] behaviors of human beings.
- Examples: Changes in call rates or visiting low entropy places more could mean person is sick
- Statistics of number of calls, co-location, proximity, WLAN and bluetooth entropy found to be good predictors of illness.
- Findings could be used as an early warning tool.
- If strong inference, then nurse could call the person
- This work was basis for Venture funded company Ginger.io

- How, when, where existing apps, mobile web, are being used
- Example: Where users engage in mobile commerce in UK

