
CS 528 Mobile and Ubiquitous Computing
Lecture 7b: Machine Learning for Ubiquitous Computing

Emmanuel Agu

Intuitive Introduction to Machine Learning
for Ubiquitous Computing

My Goals in this Section

⚫ If you know machine learning
⚫ Set off light bulb

⚫ Projects involving ML?

⚫ If you don’t know machine learning
⚫ Get general idea, how it’s used

⚫ Knowledge will also make papers easier to read/understand

Recall: Activity Recognition

⚫ Want app to detect when user is performing any of the following 6
activities
⚫ Walking,

⚫ Jogging,

⚫ Ascending stairs,

⚫ Descending stairs,

⚫ Sitting,

⚫ Standing

Recall: Activity Recognition Overview

Machine

Learning

Classifier

Walking

Running

Climbing Stairs

Gather Accelerometer data

Classify

Accelerometer

data

Recall: Example Accelerometer Data for Activities

Different user activities generate different accelerometer patterns

Recall: Example Accelerometer Data for Activities

Different user activities generate different accelerometer patterns

DIY Activity Recognition (AR) Android App

⚫ As user performs an activity, AR app on user’s smartphone
1. Gathers accelerometer data

2. Uses machine learning classifier to determine what activity (running, jumping, etc) accelerometer
pattern corresponds to

⚫ Classifier: Machine learning algorithm that guesses what activity class (or type)
accelerometer sample corresponds to

Machine Learning

Classifier

Activity Recognition

App

Gather Accelerometer

Data from Smartphone

Walking Running In Vehicle

msensor = (mSensorManager)

getSystemService(Context.SENSOR_SERVICE)

….

Public void onSensorChanged(SensorEvent event){

….

}

Next: Machine learning

Classification

Classification for Ubiquitous Computing

Classification

⚫ Classification is type of machine learning used a lot in Ubicomp

⚫ Classification? determine which class a sample (e.g. snippet of accelerometer data)
belongs to. Examples:

Voice

Sample

Stressed

Not Stressed

Walking

Jogging

Sitting still

Ascending

Stairs

Stress Detector App

Accelerometer

Sample

Machine Learning

Classifier

Machine Learning

Classifier
Machine Learning

Classifier

Activity Recognition App

Classes

Classes

Classification

Fear

Happy

Neutral

Sadness

Image showing

Facial Expression

Machine Learning

Classifier
Machine Learning

Classifier

Facial Interpretation

App

Disgust

Anger

Surprise

Classes

Classifier

⚫ Analyzes new sample, guesses corresponding class

⚫ Intuitively, can think of classifier as set of rules for classification. E.g.

⚫ Example rules for classifying accelerometer signal in Activity Recognition

If ((Accelerometer peak value > 12 m/s)

and (Accelerometer average value < 6 m/s)){

Activity = “Jogging”;

}

Accelerometer

Sample

Machine Learning

Classifier
Machine Learning

Classifier

Activity Recognition App

Classes

Walking

Jogging

Sitting still

Ascending

Stairs

Training a Classifier

⚫ Created using example-based approach (called training)

⚫ Training a classifier: Given examples of each class => generate rules to categorize
new samples

⚫ E.g: Analyze 30+ Examples (from 30 subjects) of accelerometer signal for each activity
type (walking, jogging, sitting, ascending stairs) => generate rules (classifier) to
classify future activities

Train Machine

Learning

Classifier

Activity Recognition

Classifier

Examples of

user walking

Examples of user

ascending stairs

Examples of

user jogging

Examples of

user sitting

Training a Classifier: Steps

Steps for Training a Classifier

1. Gather data samples + label them

2. Import accelerometer samples into classification library (e.g. Weka, MATLAB)

3. Pre-processing (segmentation, smoothing, etc)

4. Extract features

5. Train classifier

6. Export classification model as JAR file

7. Import into Android app

Step 1: Gather Sample data + Label them

⚫ Need many samples of accelerometer data corresponding to each activity
type (jogging, walking, sitting, ascending stairs, etc)

Train Machine

Learning

Classifier

Activity Recognition

Classification model

Samples of

user walking

Samples of user

ascending stairs

Samples of

user jogging

Samples of

user sitting

Samples of

user standing

Need 30+

samples of

each activity

type

Step 1: Gather Sample data + Label them

⚫ Conduct a study to gather sample accelerometer
data for each activity class
⚫ Recruit 30+ subjects

⚫ Run program that gathers accelerometer sensor data
on subject’s phone

⚫ Each subject:

⚫ Perform each activity (walking, jogging, sitting, etc)

⚫ Collect accelerometer data while they perform each activity
(walking, jogging, sitting, etc)

⚫ Label data. i.e. tag each accelerometer sample with the
corresponding activity

⚫ Now have 30+ examples of each activity

30+ Samples of

user ascending

stairs

30+

Samples of

user sitting

Step 1: Gather Sample data + Label them
Program to Gather Accelerometer Data

⚫ Option 1: Can write sensor program app that gathers accelerometer data while
user is doing each of 6 activities (1 at a time)

msensor = (mSensorManager)

getSystemService(Context.SENSOR_SERVICE)

….

Public void onSensorChanged(SensorEvent event){

….

}

Step 1: Gather Sample data + Label them
Program to Gather Accelerometer Data

⚫ Option 2: Use 3rd party app to gather accelerometer
⚫ 2 popular ones: Funf and AndroSensor

⚫ Just download app,

⚫ Select sensors to log

(e.g. accelerometer)

⚫ Continuously gathers sensor

data in background

⚫ FUNF app from MIT
⚫ Accelerometer readings

⚫ Phone calls

⚫ SMS messages, etc

⚫ AndroSensor Funf AndroSensor

Step 2: Import accelerometer samples into classification
library (e.g. Weka, MATLAB)

⚫ Import accelerometer data (labelled with corresponding activity) into
Weka, MATLAB, scikit-learn (or other Machine learning Framework)

Weka,

Matlab

Classifiers

Classifier is trained

offline

Walking

Ascending

stairs

ACCELEROMETER

DATA

Sitting

Jogging

LABELS

Step 3: Pre-processing (segmentation, smoothing, etc)
Segment Data (Windows)

⚫ Pre-processing data (in Weka, or MATLAB) may include segmentation,
smoothing, etc
⚫ Segment: Divide data into smaller chunks. E.g. divide 60 seconds of raw time-

series data into 5 second chunks

⚫ Note: 5 seconds of accelerometer data could be 100s of readings

⚫ Smoothing: Replace groups of values with moving average

Segments

Step 4: Compute (Extract) Features

⚫ For each 5-second segment (batch of accelerometer values) compute
features (in Weka, MATLAB, etc)

⚫ Features: Formulas computed to quantify attributes of accelerometer data,
captures accelerometer characteristics

⚫ Examples: min-max of values within each segment, largest magnitude,
standard deviation

Step 4: Compute (Extract) Features

⚫ Important: Ideally, values of features different for, distinguish each
activity type (class)

⚫ E.g: Min-max range feature
Large min-max

for jogging

Small min-max

for sitting

Step 4: Compute (Extract) Features

Calculate

many

different

features

Step 5: Train classifier

⚫ Features are just numbers (e.g. values of features for different subjects, activities)

⚫ Different values for different activities

⚫ Training classifier: figures out feature values corresponding to each activity

⚫ Weka, MATLAB already programmed with different classification algorithms (SVM,
Naïve Bayes, Random Forest, J48, logistic regression, SMO, etc)

⚫ Try different ones, compare accuracy

⚫ SVM example

Activity 1

(e.g. walking)

Activity 2

(e.g. sitting)

Classifier

Boundary

Step 5: Train classifier
⚫ Typically split data: E.g. 80% for training classifier, 20% for testing

⚫ Example: Decision Tree Classifier

⚫ Training phase: Learns thresholds for feature values extracted from
examples, which separate the classes

⚫ Test phase: Feature values of new sample compared against learned
thresholds at each node to determine its class

Step 5: MATLAB Classification Learner App
⚫ Import accelerometer data into MATLAB

⚫ Click and select Classifier types to compare

Step 5: Train classifier
Compare Accuracy of Classifier Algorithms

⚫ Weka, MATLAB also reports accuracy of each classifier type

⚫ Accuracy: Percentage of test cases that classifier guessed correctly

Compare, pick most accurate

classification algorithm

Step 6: Export Classification model as JAR file
Step 7: Import into Android app

⚫ Export classification model (most accurate classifier type + data threshold values) as
Java JAR file

⚫ Import JAR file into Android app

⚫ In app write Android code to
⚫ Gather accelerometer data, segment, extract feature, classify using classifier in JAR file

⚫ Classifies new accelerometer patterns while user is performing activity => Guess
(infer) what activity

Classifier in

Android app

Activity

(e.g. Jogging)

New accelerometer

Sample in real time

Support Vector Machine (SVM)

Scalable Vector Machines (SVM)

⚫ One of the most popular classification algorithms

⚫ If plot example points with features as axes

⚫ Classification problem: Find boundary between classes

⚫ E.g Classify healthy vs unhealthy patients

⚫ 2 Features are strongest predictors

⚫ Age

⚫ Maximum exercise rate

Classification algorithm

(e.g. SVM) finds this boundary

SVM: Delineating Boundaries

⚫ Multiple ways to delineate optimal boundary

SVM: Support Vectors

⚫ SVM first finds peripheral data points in group 1 that are closest to the points in
group 2 (called support vectors)

⚫ Then find optimal boundary between support vectors of both groups

⚫ Since SVM uses only relatively few data points (support vectors), it is
computationally efficient

SVM Limitations

⚫ Inaccurate for small datasets: Smaller dataset would have fewer
points, less likely to find good support vectors

⚫ Classifying multiple groups:
⚫ SVM classifies 2 groups at a time.

⚫ Multiple groups handled by making multiple 2-group classifications

⚫ Multi-group SVM: On each iteration, classify 1 group from the rest

⚫ Overlapping groups:
⚫ Since SVM classifies points based on what side of boundary it lies, overlapping groups present a

challenge

⚫ If classes overlap, points close to boundary may be mis-classified

More on classifier Types
k-Nearest Neighbors

K-Nearest Neighbors

⚫ Classify each point same as majority of its k nearest neighbors

⚫ E.g if k = 5, in the example below, then the unknown point (4 red
neighbors, 1 black) would be classified as being red

⚫ k is the number of neighbors to consider for voting

K-Nearest Neighbors

⚫ k is a tuning parameter, affects accuracy

⚫ k too small, only considers immediate neighbors => overfitting

⚫ k too large, tries to fit data points too far => underfit

Context Sensing

Recall: Ubicomp Senses User’s Context

⚫ Context?
⚫ Human: motion, mood, identity, gesture

⚫ Environment: temperature, sound, humidity, location

⚫ Computing Resources: Hard disk space, memory, bandwidth

⚫ Ubicomp example:

⚫ Assistant senses: Temperature outside is 10F (environment sensing) + Human plans
to go work (schedule)

⚫ Ubicomp assistant advises: Dress warm!

⚫ Sensed environment + Human + Computer resources = Context

⚫ Context-Aware applications adapt their behavior to context

Context Sensing

⚫ Activity Recognition uses data from accelerometer and gyroscope (2 sensors)

⚫ Can combine multiple sensors, use machine learning to learn user context that occur to
various outcomes (e.g. user’s emotion)

⚫ More later
Sensor 1

Sensor 2

Sensor 3

Sensor N

Machine Learning

Classifier
Machine Learning

Classifier
User

Context

Voice data

Accelerometer

Call/SMS pattern

Temperature

Machine Learning

Classifier
Machine Learning

Classifier
User

Context

Location

Regression

Regression?
⚫ Gather sleep data (sleep duration, 6 features) from 8 subjects

⚫ Fit data to line
⚫ y axis - sleep duration

⚫ x-axes – Weighted sum of 6 features

⚫ Weighted sum? Determine weights for each feature that minimizes error

⚫ Using line of best fit, in future sleep duration can be inferred from feature values

Sleep

duration

Weight for

each feature

Feature

(sum)

Sleep

duration

Weighted sum

of features

Linear Regression
⚫ Strongest predictors of home prices

are:
1. Number of rooms in the house

2. Number of low income neighbors in that
area

⚫ Linear Regression:
1. Plot these variables for actual example

homes

2. Fit line of best fit

3. Can use this line to guess price of any
home

Linear Regression: Combining Predictors

⚫ Some predictors usually have more weight than others

⚫ Sometimes combine predictors as a weighted sum

⚫ For instance, give larger weights to stronger predictors

⚫ Weights assigned to variables are called regression coefficients

Different Types of Regression

Linear

Polynomial

Decision Tree

⚫ Different regression functions to fit data to
⚫ Linear

⚫ Polynomial

⚫ Decision tree

⚫ Etc

⚫ Determine which function has best fit, lowest
error (difference)

r: Correlation Coefficient

⚫ r: A measure of how well points fit line

⚫ Direction: positive value means outcome
(e.g. housing price) increases with
increases in predictor (e.g. number of
rooms)

⚫ Magnitude: Values closer to 1 or -1
indicate better fit

Regression: Limitations

⚫ Sensitive to outliers: Since all points are equally weighted, regression
line can be affected by outliers
⚫ Removing outliers can improve regression fit (r)

⚫ Multicollinearity: Some predictors may be correlated, reducing
accuracy of regression line.
⚫ Solutions: Exclude correlated predictors or use advanced techniques (e.g. Lasso or

ridge regression)

Regression: Limitations

⚫ Non-linear or curved trends: Some trends
may not be linear, or may be curved.
⚫ May use non-linear regression line

⚫ Correlation is not causation:
⚫ Unrelated things may also seem to be good

predictors

⚫ E.g. dog ownership and house prices

Deep Learning

Deep Learning

⚫ Network of nodes, connectivity weights learned from data

⚫ Learns best weights to classify inputs (x) into outputs y

⚫ Can think about it as curve fitting

⚫ Generally more accurate if more data is available

⚫ Requires lots of computational power to train

Convolutional Neural Networks (CNNs)

⚫ Different types of neural networks good for different things

⚫ Convolutional Neural Networks good for classifying images

⚫ E.g. Is there a cat in an input picture?

Recurrent Neural Networks (RNNs)

⚫ Good at classifying sequential data

⚫ E.g. Speech translation: sequence of words

⚫ E.g. translate german sentence to English

Programming/Mobile Support for Neural Networks
https://developer.android.com/ndk/guides/neuralnetworks/index.html

⚫ Many python libraries for neural networks/deep learning

⚫ Enable training neural networks in a few lines of code

⚫ Keras

⚫ PyTorch

⚫ ScikitLearn

⚫ Training neural networks on Smartphone still tough

⚫ New in Android 8.1: Android Neural Networks API (NNAPI) allows inference (test) of
pre-trained neural networks on smartphone
⚫ Minimally supports several machine learning frameworks (e.g. Tensorflow lite, caffe2)

⚫ Keras also has some mobile support

References

⚫ Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore, Activity recognition using cell phone
accelerometers, SIGKDD Explor. Newsl. 12, 2 (March 2011), 74-82.

⚫ Deepak Ganesan, Activity Recognition, Physiological Sensing Class, UMASS Amherst

