
CS 528 Mobile and Ubiquitous Computing
Lecture 6b: Ubicomp: Sensors, step counting, HAR

Emmanuel Agu

Administrivia

 Groups should submit 1-slide on their final project (due next class)

 Quiz
 Covers lectures 5-6

 All code in those lectures handed out

 Papers and handouts

 Project 3 posted
 I’ve covered everything you need to do it EXCEPT Activity Recognition (Next week)

Android Sensors

What is a Sensor?

 Converts physical quantity (e.g. light, acceleration, magnetic
field) into a signal

 Example: accelerometer converts acceleration along X,Y,Z axes
into signal

So What?

 Raw sensor data can be processed into useful info

 Example: Raw accelerometer data can be processed/classified to infer
user’s activity (e.g. walking running, etc)

 Voice samples can be processed/classified to infer whether speaker is
nervous or not

Raw accelerometer

readings

Walking

Running

Jumping

Step count

Calories burned

Falling

Machine learning

Feature extraction

and classification

Android Sensors

 Microphone (sound)

 Camera

 Temperature

 Location (GPS, A-GPS)

 Accelerometer

 Gyroscope (orientation)

 Proximity

 Pressure

 Light

 Different phones do not

have all sensor types!!

AndroSensor Android

Sensor Box

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Enables apps to:

 Access sensors available on device and

 Acquire raw sensor data

 Specifically, using the Android Sensor Framework, you can:
 Determine which sensors are available on phone

 Determine capabilities of sensors (e.g. max. range, manufacturer, power
requirements, resolution)

 Register and unregister sensor event listeners

 Acquire raw sensor data and define data rate

Android Sensor Framework
http://developer.android.com/guide/topics/sensors/sensors_overview.html

 Android sensors can be either hardware or software

 Hardware sensor:

 physical components built into phone,

 Example: temperature

 Software sensor (or virtual sensor):

 Not physical device

 Derives their data from one or more hardware sensors (a formula)

 Example: gravity sensor

Sensor Types Supported by Android

 TYPE_PROXIMITY
 Measures an object’s proximity to

device’s screen

 Common uses: determine if handset is
held to ear

 TYPE_GYROSCOPE
 Measures device’s rate of rotation

around X,Y,Z axes in rad/s

 Common uses: rotation detection
(spin, turn, etc)

Types of Sensors

Sensor HW/SW Description Use

TYPE_ACCELEROMETER HW Rate of change of velocity Shake, Tilt

TYPE_AMBIENT_TEMPERATURE HW Room temperature Monitor Room temp

TYPE_GRAVITY SW/HW Gravity along X,Y,Z axes Shake, Tilt

TYPE_GYROSCOPE HW Rate of rotation Spin, Turn

TYPE_LIGHT HW Illumination level Control Brightness

TYPE_LINEAR_ACCELERATION SW/HW Acceleration along X,Y,Z – g Accel. Along an axis

TYPE_MAGNETIC_FIELD HW Magnetic field Create Compass

TYPE_ORIENTATION SW Rotation about X,Y,Z axes Device position

TYPE_PRESSURE HW Air pressure Air pressure

TYPE_PROXIMITY HW Any object close to device? Phone close to face?

TYPE_RELATIVE_HUMIDITY HW % of max possible humidity Dew point

TYPE_ROTATION_VECTOR SW/HW Device’s rotation vector Device’s orientation

TYPE_TEMPERATURE HW Phone’s temperature Monitor temp

2 New Hardware Sensor introduced in Android 4.4

 TYPE_STEP_DETECTOR
 Triggers sensor event each time user takes a step (single step)

 Delivered event has value of 1.0 + timestamp of step

 TYPE_STEP_COUNTER
 Also triggers a sensor event each time user takes a step

 Delivers total accumulated number of steps since this sensor was first registered by an app,

 Tries to eliminate false positives

 Common uses: step counting, pedometer apps

 Requires hardware support, available in Nexus 5

 Alternatively step counting available through Google Play Services (more later)

Sensor Programming

 Sensor framework is part of android.hardware

 Classes and interfaces include:
 SensorManager

 Sensor

 SensorEvent

 SensorEventListener

 These sensor-APIs used for:
1. Identifying sensors and sensor capabilities

2. Monitoring sensor events

Sensor Events and Callbacks

 Sensors send events to sensor manager
asynchronously, when new data arrives

 General approach:
 App registers callbacks

 SensorManager notifies app of sensor event
whenever new data arrives (or accuracy
changes)

Sensor

 A class that can be used to create instance of
a specific sensor
 E.g instance of accelerometer

 Has methods used to determine a sensor’s
capabilities

 Included in sensor event object

SensorEvent

 Android system sends sensor event information as a sensor event object

 Sensor event object includes:
 Sensor: Type of sensor that

generated the event

 Values: Raw sensor data

 Accuracy: Accuracy of the data

 Timestamp: Event timestamp

Sensor value depends

on sensor type

Sensor Values
Depend on
Sensor Type

Sensor Values Depend on Sensor Type

SensorEventListener

 Interface used to create 2 callbacks that receive notifications (sensor events)
when:

 Sensor values change (onSensorChange()) or

 When sensor accuracy changes (onAccuracyChanged())

Sensor API Tasks

 Sensor API Task 1: Identifying sensors and their capabilities

 Why identify sensor and their capabilities at runtime?

 Disable app features using sensors not present, or

 If multiple sensors of 1 type, choose implementation with best performance

 Sensor API Task 2: Monitor sensor events

 Why monitor sensor events?

 To acquire raw sensor data

 Sensor event occurs every time sensor detects change in parameters it is measuring

 E.g. change in phone’s rotational velocity triggers gyroscope sensor event

Sensor Availability

 Different sensors are available on different Android versions

Identifying Sensors and Sensor Capabilities

 First create instance of SensorManager by calling getSystemService()
and passing in SENSOR_SERVICE argument

 Then list sensors available on device by calling getSensorList()

 To list particular type, use TYPE_GYROSCOPE, TYPE_GRAVITY, etc

http://developer.android.com/guide/topics/sensors/sensors_overview.html

Checking if Phone has at least one of particular Sensor Type

 Device may have multiple sensors of a particular type.
 E.g. multiple magnetometers

 If multiple sensors of a given type exist, one of them must be designated “the default
sensor” of that type

 To determine if specific sensor type exists use getDefaultSensor()

 Example: To check whether device has at least one magnetometer

Example: Monitoring Light Sensor Data

 Goal: Monitor light sensor data using onSensorChanged(), display it in a TextView
defined in main.xml

Create instance of

Sensor manager

Get default

Light sensor

Called by Android system when accuracy of sensor being monitored changes

Example: Monitoring Light Sensor Data (Contd)

Get new light sensor value

Unregister sensor if app

is no longer visible to

reduce battery drain

Register sensor when app becomes visible

Called by Android system to report new sensor value

Provides SensorEvent object containing new sensor data

Handling Different Sensor Configurations

 Different phones have different sensors built in

 E.g. Motorola Xoom has pressure sensor, Samsung Nexus S doesn’t

 If app uses a specific sensor, how to ensure this sensor exists on target device?

 Two options

 Option 1: Detect device sensors at runtime, enable/disable app features as appropriate

 Option 2: Use AndroidManifest.xml entries to ensure that only devices possessing required
sensor can see app on Google Play

 E.g. following manifest entry in AndroidManifest ensures that only devices with accelerometers will
see this app on Google Play

Option 1: Detecting Sensors at Runtime

 Following code checks if device has at least one pressure sensor

Example Step Counter App

 Goal: Track user’s steps, display it in TextView

 Note: Phone hardware must support step counting

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Example Step Counter App (Contd)

https://theelfismike.wordpress.com/2013/11/10/android-4-4-kitkat-step-detector-code/

Step Counting
(How Step Counting Works)

Sedentary Lifestyle

 Sedentary lifestyle
 increases risk of diabetes, heart disease, dying earlier, etc

 Kills more than smoking!!

 Categorization of sedentary lifestyle based on step count by paper:
 “Catrine Tudor-Locke, Cora L. Craig, John P. Thyfault, and John C. Spence, A step-defined sedentary

lifestyle index: < 5000 steps/day”, Appl. Physiol. Nutr. Metab. 38: 100–114 (2013)

Step Count Mania

 Everyone is crazy about step count these days

 Pedometer apps, pedometers, fitness trackers, etc

 Tracking makes user aware of activity levels, motivates them to exercise more

How does a Pedometer Detect/Count Steps
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 As example of processing Accelerometer data

 Walking or running results in motion along the 3 body axes (forward, vertical, side)

 Smartphone has similar axes
 Alignment depends on phone orientation

The Nature of Walking
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Vertical and forward acceleration increases/decreases during different phases
of walking

 Walking causes a large periodic spike in one of the accelerometer axes

 Which axes (x, y or z) and magnitude depends on phone orientation

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Step 1: smoothing
 Signal looks choppy

 Smooth by replacing each sample with average of current, prior and next sample (Window of 3)

 Step 2: Dynamic Threshold Detection
 Focus on accelerometer axis with largest peak

 Would like a threshold such that each crossing is a step

 But cannot assume fixed threshold (magnitude depends on phone orientation)

 Track min, max values observed every 50 samples

 Compute dynamic threshold: (Max + Min)/2

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 A step is
 indicated by crossings of dynamic threshold

 Defined as negative slope (sample_new < sample_old) when smoothed waveform crosses
dynamic threshold

Steps

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Problem: vibrations (e.g. mowing lawn, plane taking off) could be counted as a step

 Optimization: Fix by exploiting periodicity of walking/running

 Assume people can:
 Run: 5 steps per second => 0.2 seconds per step

 Walk: 1 step every 2 seconds => 2 seconds per step

 So, eliminate “negative crossings” that occur outside period [0.2 – 2 seconds] (e.g. vibrations)

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Previous step detection algorithm is simple.

 Can use more sophisticated signal processing algorithms for smoothing

 Frequency domain processing (E.g. Fourier transform + low-pass filter)

Estimate Distance Traveled
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Calculate distance covered based on number of steps taken

Distance = number of steps × distance per step (1)

 Distance per step (stride) depends on user’s height (taller people, longer strides)

 Using person’s height, can estimate their stride, then number of steps taken per 2
seconds

Estimating Calories Burned
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 To estimate speed, remember that speed = distance/time. Thus,

Speed (in m/s) = (no. steps per 2 s × stride (in meters))/2s (2)

 Can also convert to calorie expenditure, which depends on many factors E.g
 Body weight, workout intensity, fitness level, etc

 Rough relationship given in table

 Expressed as an equation

 First convert from speed in km/h to m/s
Calories (C/kg/h) = 1.25 × speed (m/s) × 3600/1000 = 4.5 × speed (m/s) (4)

Calories (C/kg/h) = 1.25 × running speed (km/h) (3)

x / y = 1.25

References

 Android Sensors Overview, http://developer.android.com/

guide/topics/sensors/sensors_overview.html

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

References

 John Corpuz, 10 Best Location Aware Apps

 Liane Cassavoy, 21 Awesome GPS and Location-Aware Apps for Android,

 Head First Android

 Android Nerd Ranch, 2nd edition

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

