
CS 528 Mobile and Ubiquitous Computing
Lecture 3a: Android Components, Saving State & Rotation

Emmanuel Agu

Android App Components

Android App Components

 Typical Java program starts from main()

 Android app: No need to write a main

 Just define app components derived from base classes already defined
in Android

Android App Components

 4 main types of Android app components:

 Activity (already seen this)

 Service

 Content provider

 Broadcast receiver

Android OS
Android App

Activity

Service

Content Provider

Broadcast Receiver

Activity

Service

Content Provider

Broadcast Receiver

Base classes in

Android OS

Components in app

derived from Android

component classes

Recall: Activities

 Activity: main building block of Android UI

 Analogous to a window or dialog box in a desktop
application

 Apps
 have at least 1 activity that deals with UI

 Entry point of app similar to main() in C

 typically have multiple activities

 Example: A camera app
 Activity 1: to focus, take photo, start activity 2

 Activity 2: to present photo for viewing, save it

Fragments
 Fragments

 UI building blocks (pieces), can be arranged in Activities in different ways.

 Enables app to look different on different devices (e.g. phone vs tablet)

 An activity can contain multiple fragments that are organized
differently on different devices (e.g. for phone vs tablet)

 Parent activity:
 Hosts fragment

 Defines location for fragment on screen

 Swaps fragments in/out dynamically

 More later

Services
 Activities are short-lived, can be shut down anytime (e.g when user

presses back button)

 Services keep running in background

 Similar to Linux/Unix CRON job

 Example uses of services:
 Periodically check/update device’s GPS location

 Check for updates to RSS feed

 Independent of any activity, minimal interaction

 Typically an activity will control a service -- start it, pause it, get data
from it

 Services in an App are sub-class of Android’s Services class

Android Platform Services

 Android Services can either be on:
 On smartphone or Android device (local)

 Remote, on Google server/cloud

 Android platform local services examples (on smartphone):
 LocationManager: location-based services.

 ClipboardManager: access to device’s clipboard, cut-and-paste content

 DownloadManager: manages HTTP downloads in background

 FragmentManager: manages the fragments of an activity.

 AudioManager: provides access to audio and ringer controls.

Android services

on smartphone

Android services

In Google cloud

Google Services (In Google Cloud)

 Maps

 Location-based services

 Game Services

 Authorization APIs

 Google Plus

 Play Services

 In-app Billing

 Google Cloud Messaging

 Google Analytics

 Google AdMob ads

Typically need

Internet connection

Android services

on smartphone

Android services

In Google cloud

Content Providers

 Android apps can share data (e.g. User’s contacts) as content provider

 Content Provider:
 Abstracts shareable data, makes it accessible through methods

 Applications can access that shared data by calling methods for the relevant
content provider

 E.g. Can query, insert, update, delete shared data (see below)

Shared data

Content Providers

 E.g. Data stored in Android Contacts app can be accessed by other apps

 Example: We can write an app that:

 Retrieve’s contacts list from contacts content provider

 Adds contacts to social networking (e.g. Facebook)

 Apps can also ADD to data through content provider. E.g. Add contact

 E.g. Our app can also share its data

 Content provider in an App are sub-class of Android’s ContentProvider class

Broadcast Receivers

 Android OS (system), or applications, periodically broadcasts events

 Example broadcasts:

 Battery getting low

 Download completed

 New email arrived

 Any app can create broadcast receiver to listen for broadcasts, respond

 Our app can also initiate broadcasts

 Broadcast receivers typically

 Doesn’t interact with the UI

 Creates a status bar notification to alert the user when broadcast event occurs

 Broadcast Receiver in an App are sub-class of Android’s BroadcastReceiver class

Quiz

 Pedometer App has the following Android components:

 Component A: continously counts user’s steps even when user closes app, does other things
on phone (e.g. youtube, calls)

 Component B: Displays user’s step count

 Component C: texts user’s friends (from contacts list) every day with their step totals

 What should component A be declared as?
 Activity, service, content provider, broadcast receiver?

 What of component B?

 Component C?
Android App

Activity

Service

Content Provider

Broadcast Receiver

Android Activity LifeCycle

Starting Activities
 Android Activity callbacks invoked corresponding to app state.

 Examples:

 When activity is created, its onCreate() method invoked (like constructor)

 When activity is paused, its onPause() method invoked

Android OS

Android Activity

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when certain events occur

Programmer writes code in callbacks

to respond to event

Activity Callbacks

 onCreate()

 onStart()

 onResume()

 onPause()

 onStop()

 onRestart()

 onDestroy()

Already saw this (initially called)

Android OS

Android App

onCreate()

onStart()

onResume()

onPause()

……

Android OS invokes specific

callbacks when specific events occur

IMPORTANT: Android OS invokes all

callbacks!!

Understanding Android Lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle.html

 Many disruptive things could happen while app is running

 Incoming call or text message, user switches to another app, etc

 Well designed app should NOT:
 Crash if interrupted, or user switches to other app

 Lose the user's state/progress (e.g state of chess game app) if they leave your
app and return later

 Crash or lose the user's progress when the screen rotates between landscape
and portrait orientation.

 E.g. Youtube video should continue at correct point after rotation

 To handle these situations, appropriate callback methods must be invoked
appropriately to “tidy up” before app gets bumped

OnCreate()
 Initializes activity once created

 Operations typically performed in onCreate() method:
 Inflate (create) widgets and place them on screen

 (e.g. using layout files with setContentView())

 Getting references to inflated widgets (using findViewbyId())

 Setting widget listeners to handle user interaction

 E.g.

 Note: Android OS calls apps’ onCreate() method

Running App

 A running app is one that user is currently using or
interacting with

 Visible, in foreground

Paused App
 An app is paused if it is visible but no longer in foreground

 E.g. blocked by a pop-up dialog box

 App’s onPause() method is called during transition from
running to paused state

Paused

Running

onPause() Method
 Typical actions taken in onPause() method

 Stop animations or CPU intensive tasks

 Stop listening for GPS, broadcast information

 Release handles to sensors (e.g GPS, camera)

 Stop audio and video

Paused

Running

onResume(): Resuming Paused App

 A paused app resumes running if it becomes fully visible and in
foreground

 E.g. pop-up dialog box blocking it goes away

 App’s onResume() method is called during transition from
paused to running state
 Restart videos, animations, GPS checking, etc

Paused

Running

Stopped App

 An app is stopped if it’s no longer visible + no longer in
foreground

 E.g. user starts using another app

 App’s onStop() method is called during transition from
paused to stopped state

Running

onStop() Method

 An activity is stopped when:

 User receives phone call

 User starts another app

 Activity instance and variables of stopped app are retained
but no code is being executed by the activity

 If activity is stopped, in onStop() method, well behaved
apps should

 save progress to enable seamless restart later

 Release all resources, save info (persistence)

Resuming Stopped App

 A stopped app can go back into running state if becomes
visible and in foreground

 App’s onStart() and onResume() methods called to
transition from stopped to running state

Running

Starting New App

 To launch new app, get it to running

 App’s onCreate(), onStart() and onResume()
methods are called

 Afterwards new app is running

Saving State Data

Activity Destruction

 App may be destroyed

 On its own by calling finish

 If user presses back button

 Before Activity destroyed, system calls onSaveInstanceState

 Can save state required to recreate Activity later
 E.g. Save current positions of game pieces

onSaveInstanceState: Saving App State

 Systems write info about views to Bundle

 Programmer must save other app-specific
information using onSaveInstanceState()
 E.g. board state in a board game such as mastermind

onRestoreInstanceState(): Restoring State Data

Can restore state data in either method

 When an Activity recreated saved data sent to onCreate and
onRestoreInstanceState()

 Can use either method to restore app state data

Logging Errors in Android

Logging Errors in Android

 Android can log and display various types of errors/warnings in Android Studio Window

 Error logging is in Log class of android.util package, so need to

import android.util.Log;

 Turn on logging of different message types by calling appropriate method

Ref: Introduction to Android Programming,

Annuzzi, Darcey & Conder

QuizActivity.java

 A good way to understand Android lifecycle methods is to print debug
messages in Android Studio when they are called

onCreate(){

… print message “OnCreate called”…

}

onStart(){

… print message “OnStart called”…

}

… etc

QuizActivity.java

 Example: print debug message from
onCreate method below

QuizActivity.java

 Debug (d) messages have the form

 E.g.

 Example declaration:

 Then declare string for TAG

QuizActivity: onCreate(Bundle) called

Tag Message

QuizActivity.java

 Putting it all together

QuizActivity.java

 Can overide more lifecycle
methods

 Print debug messages from each
method

QuizActivity.java Debug Messages

 Launching GeoQuiz app activities OnCreate, OnStart and
onResume methods

 Pressing Back button destroys the activity (calls onPause,
onStop and onDestroy)

Rotating Device

Rotating Device: Using Different Layouts
 Rotating device (e.g. portrait to landscape) kills current activity and

creates new activity in landscape mode

 Rotation changes device configuration

 Device configuration: screen orientation/density/size, keyboard
type, dock mode, language, etc.

 Apps can specify different resources (e.g. XML layout files,
images) to use for different device configurations

 E.g. use different app layouts for portrait vs landscape screen
orientation

Use landscape

XML layout

Use portrait

XML layout

Rotating Device: Using Different Layouts

 Portrait: use XML layout file in res/layout

 Landscape: use XML layout file in res/layout-land/

 Copy XML layout file (activity_quiz.xml) from res/layout to
res/layout-land/ and customize it

 If configuration changes, current activity destroyed, onCreate ->
setContentView (R.layout.activity_quiz) called again

onCreate called whenever user

switches between portrait and landscape

Dead or Destroyed Activity

 onDestroy() called to destroy a stopped app

Saving Data Across Device Rotation

 Since rotation causes activity to be destroyed and new one
created, values of variables lost or reset

 To avoid losing or resetting values, save them using
onSaveInstanceState before activity is destroyed
 E.g. called before portrait layout is destroyed

 System calls onSaveInstanceState before onPause(), onStop()
and onDestroy()

Saving Data Across Device Rotation

 For example, to save the value of a variable mCurrentIndex during
rotation

 First, create a constant KEY_INDEX as a key for storing data in the
bundle

 Then override onSaveInstanceState method

Question

 Whenever I watch YouTube video on my phone, if I
receive a phone call and video stops at 2:31, after call,
when app resumes, it should restart at 2:31.

 How do you think this is implemented?

 In which Android methods should code be put into?

 How?

References

 Busy Coder’s guide to Android version 4.4

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

