
CS 528 Mobile and Ubiquitous
Computing

Lecture 6b: Step Counting & Activity
Recognition

Emmanuel Agu

Step Counting
(How Step Counting Works)

Sedentary Lifestyle

 Sedentary lifestyle
 increases risk of diabetes, heart disease, dying earlier, etc

 Kills more than smoking!!

 Categorization of sedentary lifestyle based on step count by paper:
 “Catrine Tudor-Locke, Cora L. Craig, John P. Thyfault, and John C. Spence, A step-defined

sedentary lifestyle index: < 5000 steps/day”, Appl. Physiol. Nutr. Metab. 38: 100–114 (2013)

Step Count Mania

 Everyone is crazy about step count these days

 Pedometer apps, pedometers, fitness trackers, etc

 Tracking makes user aware of activity levels, motivates them to exercise more

How does a Pedometer Detect/Count Steps
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 As example of processing Accelerometer data

 Walking or running results in motion along the 3 body axes (forward,
vertical, side)

 Smartphone has similar axes
 Alignment depends on phone orientation

The Nature of Walking
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Vertical and forward acceleration increases/decreases during different
phases of walking

 Walking causes a large periodic spike in one of the accelerometer axes

 Which axes (x, y or z) and magnitude depends on phone orientation

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Step 1: smoothing
 Signal looks choppy

 Smooth by replacing each sample with average of current, prior and next sample (Window of 3)

 Step 2: Dynamic Threshold Detection
 Focus on accelerometer axis with largest peak

 Would like a threshold such that each crossing is a step

 But cannot assume fixed threshold (magnitude depends on phone orientation)

 Track min, max values observed every 50 samples

 Compute dynamic threshold: (Max + Min)/2

Step Detection Algorithm
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 A step is
 indicated by crossings of dynamic threshold

 Defined as negative slope (sample_new < sample_old) when smoothed waveform
crosses dynamic threshold

Steps

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Problem: vibrations (e.g. mowing lawn, plane taking off) could be counted as a
step

 Optimization: Fix by exploiting periodicity of walking/running

 Assume people can:
 Run: 5 steps per second => 0.2 seconds per step

 Walk: 1 step every 2 seconds => 2 seconds per step

 So, eliminate “negative crossings” that occur outside period [0.2 – 2 seconds] (e.g. vibrations)

Step Detection Algorithms
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Previous step detection algorithm is simple.

 Can use more sophisticated signal processing algorithms for smoothing

 Frequency domain processing (E.g. Fourier transform + low-pass filter)

Estimate Distance Traveled
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 Calculate distance covered based on number of steps taken

Distance = number of steps × distance per step (1)

 Distance per step (stride) depends on user’s height (taller people, longer strides)

 Using person’s height, can estimate their stride, then number of steps taken per
2 seconds

Estimating Calories Burned
Ref: Deepak Ganesan, Ch 2 Designing a Pedometer and Calorie Counter

 To estimate speed, remember that speed = distance/time. Thus,

Speed (in m/s) = (no. steps per 2 s × stride (in meters))/2s (2)

 Can also convert to calorie expenditure, which depends on many factors E.g
 Body weight, workout intensity, fitness level, etc

 Rough relationship given in table

 Expressed as an equation

 First convert from speed in km/h to m/s
Calories (C/kg/h) = 1.25 × speed (m/s) × 3600/1000 = 4.5 × speed (m/s) (4)

Calories (C/kg/h) = 1.25 × running speed (km/h) (3)

x / y = 1.25

Introduction to Activity
Recognition

Activity Recognition

 Goal: Want our app to detect what activity the user is doing?

 Classification task: which of these 6 activities is user doing?
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 Typically, use machine learning classifers to classify user’s
accelerometer signals

Activity Recognition Overview

Machine

Learning

Classifier

Walking

Running

Climbing Stairs

Gather Accelerometer data

Classify

Accelerometer

data

Example Accelerometer Data for Activities

Example Accelerometer Data for Activities

Applications of Activity
Recognition

Recall: Activity Recognition

 Goal: Want our app to detect what activity the user is doing?

 Classification task: which of these 6 activities is user doing?
 Walking,

 Jogging,

 Ascending stairs,

 Descending stairs,

 Sitting,

 Standing

 Typically, use machine learning classifers to classify user’s
accelerometer signals

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Fitness Tracking:
 Initially:

 Physical activity type,

 Distance travelled,

 Calories burned

 Newer features:

 Stairs climbed,

 Physical activity

(duration + intensity)

 Activity type logging + context
e.g. Ran 0.54 miles/hr faster
during morning runs

 Sleep tracking

 Activity history
Note: AR refers to algorithm

But could run on a range of devices

(smartphones, wearables, e.g. fitbit)

 Health monitoring: How well is patient performing activity?

 Make clinical monitoring pervasive, continuous, real world!!

 Gather context information (e.g. what makes condition worse/better?)

 E.g. timed up and go test

 Show patient contexts that worsen condition => Change behavior

 E.g. walking in narror hallways worsens gait freeze

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

COPD, Walk tests in the wild

Parkinsons disease

Gait freezing

Question: What

data would you need

to build PD gait classifier?

From what types of subjects?

 Fall: Leading cause of death for seniors

 Fall detection: Smartphone/watch, wearable detects senior
who has fallen, alert family
 Text message, email, call relative

Applications of Activity Recognition
Ref: Lockhart et al, Applications of Mobile Activity recognition

Fall detection + prediction

Applications of Activity Recognition (AR)
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Context-Aware Behavior:
 In-meeting? => Phone switches to silent mode

 Exercising? => Play song from playlist, use larger font sizes for text

 Arrived at work? => download email

 Study found that messages delivered when transitioning between activities
better received

 Adaptive Systems to Improve User Experience:
 Walking, running, riding bike? => Turn off Bluetooth, WiFi (save power)

 Can increase battery life up to 5x

Applications of AR
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Smart home:
 Determine what activities people in the home are doing,

 Why? infer illness, wellness, patterns, intrusion (security), etc

 E.g. TV automatically turns on at about when you usually lie on the couch

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Targeted Advertising:
 AR helps deliver more relevant ads

 E.g user runs a lot => Get exercise clothing ads

 Goes to pizza places often + sits there => Get pizza ads

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Research Platforms for Data Collection:
 E.g. public health officials want to know how much time various

people (e.g. students) spend sleeping, walking, exercising, etc

 Mobile AR: inexpensive, automated data collection

 E.g. Stanford Inequality project: Analyzed physical activity of 700k
users in 111 countries using smartphone AR data

 http://activityinequality.stanford.edu/

Applications of AR: 3rd Party Apps
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Track, manage staff on-demand:
 E.g. at hospital, determine “availability of nurses”, assign them to

new jobs/patients/surgeries/cases

Applications of AR: Social Networking
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Activity-Based Social Networking:
 Automatically connect users who do same activities + live close together

Applications of AR: Social Networking
Ref: Lockhart et al, Applications of Mobile Activity recognition

 Activity-Based Place Tagging:
 Automatically “popular” places where users perform same activity

 E.g. Park street is popular for runners (activity-based maps)

 Automatic Status updates:
 E.g. Bob is sleeping

 Tracy is jogging along Broadway with track team

 Privacy/security concerns => Different Levels of details for different friends

Activity Recognition
Using Google API

Activity Recognition

 Activity Recognition? Detect what user is doing?
 Part of user’s context

 Examples: sitting, running, driving, walking

 Why? App can adapt it’s behavior based on user behavior

 E.g. If user is driving, don’t send notifications

https://www.youtube.com/watch?v=S8sugXgUVEI

https://www.youtube.com/watch?v=S8sugXgUVEI
https://www.youtube.com/watch?v=S8sugXgUVEI

Google Activity Recognition API

 API to detect smartphone user’s current activity

 Programmable, can be used by your Android app

 Currently detects 8 states:
 In vehicle

 On Bicycle

 On Foot

 Running

 Walking

 Still

 Tilting

 Unknown

Google Activity Recognition API

 Deployed as part of Google Play Services

Machine Learning

Classifiers

Activity Recognition API

Google Play Services

Your Android App

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul Trebilcox-Ruiz on
Tutsplus.com tutorials

 Example code for this tutorial on gitHub:
https://github.com/tutsplus/Android-ActivityRecognition

 Google Activity Recognition can:
 Recognize user’s current activity (Running, walking, in a vehicle or still)

 Project Setup:
 Create Android Studio project with blank Activity (minimum SDK 14)

 In build.gradle file, define latest Google Play services (now 11.8) as
dependency

Now currently Version 11.8.0

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Create new class ActivityRecognizedService which extends IntentService

 IntentService: type of service, asynchronously handles work off main thread

 Throughout user’s day, Activity Recognition API sends user’s activity to this
IntentService in the background

 Need to program this Intent to handle incoming user activity

Called by Android OS

to deliver

User’s activity

Activity Recognition Using AR API
Ref: How to Recognize User Activity with Activity Recognition by Paul
Trebilcox-Ruiz on Tutsplus.com tutorials

 Modify AndroidManifest.xml to
 Declare ActivityRecognizedService

 Add com.google.android.gms.permission.ACTIVITY_RECOGNITION permission

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.tutsplus.activityrecognition">

<uses-permission android:name="com.google.android.gms.permission.ACTIVITY_RECOGNITION" />

<application

android:icon="@mipmap/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme">

<activity android:name=".MainActivity">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<service android:name=".ActivityRecognizedService" />

</application>

</manifest>

http://schemas.android.com/apk/res/android

Requesting Activity Recognition

 In MainActivity.java, To connect to Google Play Services:
 Provide GoogleApiClient variable type + implement callbacks

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

public class MainActivity extends AppCompatActivity implements GoogleApiClient.ConnectionCallbacks,

GoogleApiClient.OnConnectionFailedListener {

public GoogleApiClient mApiClient;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

@Override

public void onConnected(@Nullable Bundle bundle) {

}

@Override

public void onConnectionSuspended(int i) {

}

@Override

public void onConnectionFailed(@NonNull ConnectionResult connectionResult) {

}

}

Handle to Google Activity

Recognition client

Called if Google Play connection fails

Called if sensor (accelerometer)

connection fails

Normal AR call if everything

working well

Requesting Activity Recognition
 In onCreate, initialize client and connect to Google Play Services

Request ActivityRecognition.API

Associate listeners with

our instance of

GoogleApiClient

Handling Activity Recognition
 Simply log each detected activity and display how confident Google

Play services is that user is performing this activity

private void handleDetectedActivities(List<DetectedActivity> probableActivities) {

for(DetectedActivity activity : probableActivities) {

switch(activity.getType()) {

case DetectedActivity.IN_VEHICLE: {

Log.e("ActivityRecogition", "In Vehicle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_BICYCLE: {

Log.e("ActivityRecogition", "On Bicycle: " + activity.getConfidence());

break;

}

case DetectedActivity.ON_FOOT: {

Log.e("ActivityRecogition", "On Foot: " + activity.getConfidence());

break;

}

case DetectedActivity.RUNNING: {

Log.e("ActivityRecogition", "Running: " + activity.getConfidence());

break;

}

case DetectedActivity.STILL: {

Log.e("ActivityRecogition", "Still: " + activity.getConfidence());

break;

}

case DetectedActivity.TILTING: {

Log.e("ActivityRecogition", "Tilting: " + activity.getConfidence());

break;

}

Sample output

Switch statement on

activity type

Handling Activity Recognition

 If confidence is > 75, activity detection is probably accurate

 If user is walking, ask “Are you walking?”

case DetectedActivity.WALKING: {

Log.e("ActivityRecogition", "Walking: " + activity.getConfidence());

if(activity.getConfidence() >= 75) {

NotificationCompat.Builder builder = new NotificationCompat.Builder(this);

builder.setContentText("Are you walking?");

builder.setSmallIcon(R.mipmap.ic_launcher);

builder.setContentTitle(getString(R.string.app_name));

NotificationManagerCompat.from(this).notify(0, builder.build());

}

break;

}

case DetectedActivity.UNKNOWN: {

Log.e("ActivityRecogition", "Unknown: " + activity.getConfidence());

break;

}

}

}

}

 Sample displayed on development console

 Full code at: https://github.com/tutsplus/Android-ActivityRecognition

Sample Output of Program

Android Awareness API

Awareness API
https://developers.google.com/awareness/overview

 Single Android API for context awareness released in 2016

 Combines some APIs already covered (Place, Activity, Location)

Awareness API

 Snapshot API:
 Return cached values (Nearby Places, weather, Activity, etc)

 System caches values

 Optimized for battery and power consumption

 Fences API:
 Used to set conditions to trigger events

 E.g. if(user enters a geoFence & Activity = running) notify my app

 Good tutorials for Awareness API:
 Google Play Services: Awareness API by Paul Trebilcox-Ruiz

https://code.tutsplus.com/tutorials/google-play-services-awareness-api--cms-25858

 Exploring the Awareness API by Joe Birch
https://medium.com/exploring-android/exploring-the-new-google-awareness-api-bf45f8060bba

https://code.tutsplus.com/tutorials/google-play-services-awareness-api--cms-25858
https://medium.com/exploring-android/exploring-the-new-google-awareness-api-bf45f8060bba

Quiz 3

Quiz 3

 Quiz in class next Thursday (before class Oct 10)

 Short answer questions

 Try to focus on understanding, not memorization

 Covers:
 Lecture slides for lectures 5a,5b,6a, 6b

 1 code example from book

 HFAD examples: Odometer (Distance Travelled), Ch 13. pg 541

 All APIs mentioned so far (sensors, Activity Recognition, maps, location
sensing, etc)

References

 Android Sensors Overview, http://developer.android.com/

guide/topics/sensors/sensors_overview.html

 Busy Coder’s guide to Android version 6.3

 CS 65/165 slides, Dartmouth College, Spring 2014

 CS 371M slides, U of Texas Austin, Spring 2014

